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Abstract

We present a detailed algebraic study of theN = 2 cohomological set-up describing the balanced
topological field theory of Dijkgraaf and Moore. We emphasize the role ofN = 2 topological
supersymmetry andsl(2,R) internal symmetry by a systematic use of superfield techniques and of an
sl(2,R) covariant formalism. We provide a definition ofN = 2 basic and equivariant cohomology,
generalizing Dijkgraaf’s and Moore’s, and ofN = 2 connection. For a general manifold with a
group action, we show that: (i) theN = 2 basic cohomology is isomorphic to the tensor product
of the ordinaryN = 1 basic cohomology and a universalsl(2,R) group theoretic factor; (ii) the
affine spaces ofN = 2 andN = 1 connections are isomorphic. © 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Topological quantum field theories are complicated, often fully interacting, local renor-
malizable field theories, yet they can be solved exactly and the solution is highly nontrivial.
Expectation values of topological observables provide topological invariants of the mani-
folds on which the fields propagate. These invariants are independent from the couplings
and to a large extent from the interactions between the fields. At the same time, topological
field theories are often topological sectors of ordinary field theories. In this way, they are
convenient testing grounds for subtle nonperturbative field theoretic phenomena. See, e.g.,
Refs. [1–3] for an updated comprehensive review on the subject and complete referencing.

N = 1 cohomological topological field theories have been the object of intense and
exhaustive study. They can be understood in the framework of equivariant cohomology
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of infinite dimensional vector bundles [4–9] and realized as Mathai–Quillen integral rep-
resentations of Euler classes [10–13]. The resulting formalism is elegant and general and
covers the important case where the quotient by the action of a gauge symmetry group is
required. Each of these models describes the differential topology of a certain moduli space,
depending on the model considered: the field theoretic correlation functions of topological
observables correspond to intersection numbers on the moduli space.

N = 2 cohomological topological field theories were discovered quite early [14–17],
but they did not arouse much interest until recently when it became clear that they might
provide important clues in the analysis ofS duality in supersymmetric Yang–Mills theory
and in the study of the world volume theories ofD-branes in string theory.

In Ref. [18], Vafa and Witten performed an exact strong coupling test ofS duality of
N = 4 supersymmetric 4-dimensional Yang–Mills theory by studying a topological twist
of the model yielding anN = 2 cohomological field theory. They showed that the partition
function isZ(τ) = ∑

kak exp(2π iτk), whereak is the Euler characteristic of the mod-
uli space ofk instantons, and testedS duality by analyzing the modularity properties of
Z(τ). Their work, inspired by the original work of Yamron [14], was soon developed and
refined in a series of papers [19–24]. In Ref. [25], Bershadsky et al. showed that the three
N = 2 cohomological topological field theories obtained by the nontopological twistings
of N = 4 supersymmetric 4-dimensional Yang–Mills theory arose from curved 3-branes
embedded in Calabi–Yau manifolds and manifolds with exceptional holonomy groups.
Their analysis was continued and further developed in Refs. [21,26–28], where the con-
nection with higher dimensional instantons was elucidated. In Ref. [29], Park constructed
a family of Yang–Mills instantons fromD-instantons in topological twistedN = 4 super-
symmetric 4-dimensional Yang–Mills theory. In Ref. [30], Hofman and Park worked out
a 2-dimensionalN = 2 cohomological topological field theory as a candidate for covari-
ant second quantized RNS superstrings, which they conjectured to be a formulation ofM

theory.
All the endeavors mentioned above, and many other related ones, which we cannot

mention for lack of space, show thatN = 2 cohomological topological field theories are
relevant in a variety of physical and mathematical issues. In spite of that, the body of
literature devoted to the study of the geometry of such models is comparatively small. In
Ref. [17], Blau and Thompson worked out a Riemannian formulation ofN = 2 topological
gauge theory usingN = 2 topological superfield techniques. In Ref. [31], Dijkgraaf and
Moore showed that all knownN = 2 topological models were examples of “balanced
topological field theories” and developed a cohomological framework suitable for their
study. In Ref. [21], Blau and Thompson proved the equivalence of their earlier formulation
and Dijkgraaf’s and Moore’s. These studies show that the partition function of everyN =
2 topological model calculates the Euler characteristic of some moduli space of vanishing
virtual dimension. They also indicate that the appropriate cohomological scheme is provided
by N = 2 basic or equivariant cohomology. The present paper aims at a systematic study
of the latter developing the ideas of [31].

In general, a cohomological topological field theory is characterized by a symmetry Lie
algebrag, a graded algebra of fieldsf and a set of graded derivations onf generating a Lie
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algebrat. In turn, the topological algebrat provides the algebraic and geometric framework
for the definition of the topological observables [1].

As is well known, inN = 1 cohomological topological field theory,t is generated by four
derivationsk, d, j (ξ), l(ξ), ξ ∈ g, of degrees 0, 1, −1, 0, respectively, obeying the graded
commutation relations given by Eqs. (29)–(33) below.k is the ghost number operator.d is
the nilpotent topological charge.j (ξ), l(ξ) describe the action of the symmetry Lie algebra
g on fields. The elementsα ∈ f are classified into the eigenspacesfp, p ∈ Z, of k. The
N = 1 basic degreep cohomology off is defined by

j (ξ)α = 0, l(ξ)α = 0, ξ ∈ g, dα = 0, (1)

α ≡ α + dβ, β ∈ fp−1, j (ξ)β = 0, l(ξ)β = 0, ξ ∈ g, (2)

with α ∈ fp.
TheN = 1 Weil algebraw, an essential element of the definition of theN = 1 equivariant

cohomology off, is generated by twog valued fieldsω, φ of degrees 1,2, respectively.t acts
onw according to (49)–(51) below.

k, d, j (ξ), l(ξ) can be organized into twoN = 1 topological superderivation

H = k − θd, (3)

I (ξ) = j (ξ) + θl(ξ), ξ ∈ g. (4)

The Lie algebra structure oft is compatible with the underlyingN = 1 topological super-
symmetry, since the commutation relations oft can be written in terms of the superderiva-
tionsH, I (ξ). Similarly,ω, φ can be organized into theg valued superfield

W = ω + θ(φ − 1
2[ω, ω]). (5)

The action oft onw can be written in terms of the superderivationsH, I (ξ)and the superfield
W in a manifestlyN = 1 supersymmetric way.

Analogously, inN = 2 cohomological topological field theory,t is generated by seven
graded derivationsuA, A = 1, 2,tAB, A, B = 1, 2, symmetric inA, B, k, dA, A = 1, 2, j (ξ),
jA(ξ), A = 1, 2, l(ξ), ξ ∈ g, of degrees−1, 0, 0, 1, −2, −1, 0, respectively, obeying the
graded commutation relations (40)–(44) below. TheuA are a sort of homotopy operators and
constrain the cohomology off, defined shortly, to an important extent. ThetAB andk are the
generators of the internalsl(2,R) ⊕R symmetry Lie algebra oft. ThedA are the nilpotent
topological charges.j (ξ), jA(ξ), l(ξ) describe the action of the symmetry Lie algebrag on
fields. The elementsα ∈ f are classified into the eigenspacesfn,p, n ∈ N, p ∈ Z, of the
invariantsc, k of the internal algebrasl(2,R)⊕R. TheN = 2 basic typen, p cohomology
of f is defined by

j (ξ)α = 0, jA(ξ)α = 0, l(ξ)α = 0, ξ ∈ g, dAα = 0, (6)

α ≡ α + 1
2εKLdKdLβ, β ∈ fn,p−2, j (ξ)β = 0,

jA(ξ)β = 0, l(ξ)β = 0, ξ ∈ g, (7)
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whereα ∈ fn,p. It is possible to show, using the basic relation [dA, uB ] = 1
2(tAB + εABk),

that this cohomology is trivial forp 6= ±n + 1.
TheN = 2 Weil algebraw, entering the definition ofN = 2 equivariant cohomology,

is generated by fourg valued fieldsωA, A = 1, 2, φAB, A, B = 1, 2, symmetric inA, B,
γ, ρA, A = 1, 2, of degrees 1,2,2,3, respectively.t acts onw according to (55)–(57).

uA, tAB, k, dA, j (ξ), jA(ξ), l(ξ)can be organized into twoN = 2 topological superderiva-
tion

HA = uA + 1
2θK(tAK − εAKk) − 1

2εKLθKθLdA, (8)

I (ξ) = j (ξ) + θKjK(ξ) + 1
2εKLθKθLl(ξ), ξ ∈ g. (9)

The Lie algebra structure oft is compatible with the underlyingN = 2 topological su-
persymmetry, since the commutation relations oft can be written in terms of the su-
perderivationsHA, I (ξ). Similarly, ωA, φAB, γ, ρA can be organized into theg valued
superfield

WA = ωA + θK(φAK + εAKγ − 1
2[ωA, ωK ]) + 1

2εMNθMθN(−2ρA − εKL[ωK, φAL]

+[ωA, γ ] + 1
6εKL[ωK, [ωL, ωA]]). (10)

The action oft on w can be written in terms of the superderivationsHA, I (ξ) and the
superfieldWA in a manifestlyN = 2 supersymmetric way.

In the first part of this paper, we study the topological algebrat and the Weil algebraw
abstractly both in theN = 1 and in theN = 2 case. We show that their structure is essentially
dictated by rather general requirements of closure and topological supersymmetry, which
can be defined for any value ofN . In the second part of the paper, we define basic and
equivariant cohomology, abstract connections and the Weil homomorphism both in the
N = 1 and in theN = 2 case and study some of their properties. Finally, in the third part
of the paper, we study the cohomology of manifolds carrying a right group action and show
that, in this important case, theN = 2 type(k, k + 1) basic cohomology is isomorphic to
the tensor product of theN = 1 degreek basic cohomology and the completely symmetric
tensor space

∨k−1
R

2 and that the affine spaces ofN = 2 andN = 1 connections are
isomorphic.

Throughout the paper, we stress the role of topological supersymmetry, also because we
feel that, on this score, confusing claims have appeared in the literature. This has allowed us
to discover the derivationsuA andk introduced above, which are not mentioned in Ref. [31],
but which are required byN = 2 topological supersymmetry and constrain structurally the
N = 2 cohomology.

The definition ofN = 2 basic cohomology given above is more general than that
used in Ref. [31], which is limited to the important case whereN = 1. In our judge-
ment, this definition is more appropriate, yielding the aforementioned fundamental relation
between theN = 1 andN = 2 basic cohomologies of manifolds with a right group
action.

This paper is organized as follows. We have tried to highlight the similarities and the
differences of theN = 1 andN = 2 cases in order to show in what sense the latter is a
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generalization of the former. In Section 2, we briefly review the basic facts of the theory
of superalgebras and supermodules. In Section 3, we introduce theN = 1 andN = 2
topological algebras. In Section 4, we introduce theN = 1 andN = 2 Weil algebras.
In Section 5, we define the relevant notions ofN = 1 andN = 2 (basic) cohomology.
In Section 6, we study theN = 1 andN = 2 Weil superoperations and their (basic)
cohomology and derive the relation betweenN = 1 andN = 2 cohomology. In Section 7,
we defineN = 1 andN = 2 abstract connections, equivariant cohomology and the related
Weil homomorphism. In Section 8, we apply our algebraic setup to study theN = 1 and
N = 2 (basic) cohomology of manifolds carrying a right group action and work out the
relation betweenN = 1 andN = 2 cohomologies. Finally, Section 9 outlines future lines
of inquiry.

2. Superalgebras and supermodules

2.1. Z graded algebras and the corresponding superalgebras

We begin by stipulating the following.
All the vector spaces, algebras and modules considered in this paper are real.
If s is aZ graded space, we denote bysk the subspace ofs of degreek ∈ Z. If s = s0, s

is called ungraded.
Let N ∈ N. Let θA, A = 1, . . . , N , be aN -tuple of Grassmann odd generators which

are conventionally assigned degree−1:

θAθB + θBθA = 0, A, B = 1, . . . , N; degθA = −1, A = 1, . . . , N. (11)

TheθA generate a Grassmann algebraΛN [θ ]. The derivatives∂A = ∂/∂θA are degree+1
graded derivations onΛN [θ ].

Let v be aZ graded space. TheN superspaceVN associated tov is the graded tensor
product space

VN = ΛN [θ ]⊗̂v (12)

with the canonicalZ grading. Given aZ graded algebraa, one can define theN superalgebra
AN in similar fashion. Note that∂A extends to a degree+1 graded linear operator onVN

and to a degree+1 graded derivation onAN .

Definition 1. A Z graded spacex is called anN superspace if:
1. there is aZ graded spacev such thatx is isomorphic to a subspace ofVN invariant under

all ∂A;
2. there is a minimal subspacex∗ of x such thatx = ΛN [∂]x∗, whereΛN [∂] is the

Grassmann algebra of polynomials of the derivations∂A.
The notion ofN superalgebra can be given for aZ graded algebraa in analogous fashion.

x∗(a∗) is the generating subspace (subalgebra) ofx(a).
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Definition 2. A Z graded left modulem of aZ graded algebraa is anN left a supermodule
if:
1. a is anN superalgebra;
2. m is anN superspace;
3. the∂A are graded derivations with respect to the module multiplication.
The notion ofN supermodule algebra can be given in analogous fashion.

In this paper, we are mostly concerned withZ graded Lie algebras. AZ graded Lie
algebral is aZ graded algebra whose product is graded antisymmetric and satisfies the
graded Jacobi identity.

For aZ graded Lie algebral, aZ graded leftl module algebram with unity 1 is derivative
if the action ofl onm obeys the graded Leibniz rule.

2.2. TheN = 1, 2 cases

In this paper, we concentrate on the casesN = 1, 2. In this subsection, we introduce
notation suitable for these specialN values.

Let a be aZ graded algebra.
Let N = 1. In this case, one can setθ1 = θ for simplicity. If X ∈ Ap

1 for somep ∈ Z,
thenX is of the form

X = x + θx̃ (13)

with x ∈ ap andx̃ ∈ ap+1. Note that

x = X|θ=0. (14)

Denoting∂ = ∂/∂θ , we define

X̃ = ∂X. (15)

Clearly,X̃ ∈ Ap+1
1 . Indeed,

X̃ = x̃. (16)

Let N = 2. If X ∈ Ap

2 for somep ∈ Z, thenX is of the form

X = x + θAx,A + 1
2εKLθKθLx̃ (17)

with x ∈ ap, x,A ∈ ap+1 andx̃ ∈ ap+2. 1 Note that

x = X|θ=0. (18)

Denoting∂A = ∂/∂θA, we define

X,A = ∂AX. (19)

1 The totally antisymmetric symbolsεAB, εAB are normalized so that|ε12| = |ε12| = 1 and εAKεKB =
εBKεKA = δA

B .
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Clearly,X,A ∈ Ap+1
2 . Indeed,

X,A = x,A + εAKθKx̃. (20)

So,

x,A = X,A|θ=0. (21)

Finally, we set

X̃ = 1
2εKL∂K∂LX. (22)

Clearly,X̃ ∈ Ap+2
2 , as

X̃ = x̃. (23)

3. Fundamental superstructures

In this section, we shall introduce the fundamentalN = 1 andN = 2 superstructures.
We shall present them without attempting a derivation from a simpler, more basic set of
axioms. Though this would be desirable, it would bring us to far afield. Their justification
lies ultimately in the applications they have in differential geometry and, in the infinite
dimensional case, in topological quantum field theory.

Let g be an ungraded Lie algebra.

3.1. The fundamentalN = 1 superstructure

Definition 3. The fundamentalN = 1 superstructuret of g is theN = 1 Lie superalgebra
defined by
1. t is generated byH, I (ξ), ξ ∈ g, whereH ∈ t0 andI : g 7→ t−1 is a linear map;
2. the following commutation relations hold:

[H, H ] = 0, [H, H̃ ] = H̃ , [H̃ , H̃ ] = 0, (24a–c)

[I (ξ), I (η)] = 0, [I (ξ), Ĩ (η)] = I ([ξ, η]),

[Ĩ (ξ ), Ĩ (η)] = Ĩ ([ξ, η]), ξ, η ∈ g, (25a–c)

[H, I (ξ)] = −I (ξ), [H, Ĩ (ξ)] = 0,

[H̃ , I (ξ)] = −Ĩ (ξ ), [H̃ , Ĩ (ξ)] = 0, ξ ∈ g. (26a–d)

It is straightforward to verify that the above commutation relations fulfil the graded anti-
symmetry and Jacobi identities.

The componentsh, h̃, i(ξ), ĩ(ξ), ξ ∈ g satisfy relations (24)–(26) and thus are the gen-
erators of aZ graded Lie algebra isomorphic tot. Thus,t could be defined alternatively
in this latter way. The definition given above shows thatt is indeed aN = 1 Lie super-
algebra.
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More customarily, one sets

k = h, d = −h̃, (27a,b)

j (ξ) = i(ξ), l(ξ) = ĩ(ξ ), ξ ∈ g. (28a,b)

From (24)–(26), one sees thatk, d, j andl satisfy the relations

[k, k] = 0, (29)

[k, d] = d, [k, j (ξ)] = −j (ξ),

[k, l(ξ)] = 0, ξ ∈ g, (30a–c)

[d, d] = 0, (31)

[d, j (ξ)] = l(ξ), [d, l(ξ)] = 0, ξ ∈ g, (32a,b)

[j (ξ), j (η)] = 0, [j (ξ), l(η)] = j ([ξ, η]),

[l(ξ), l(η)] = l([ξ, η]), ξ, η ∈ g. (33a–c)

Note that, by (29),k generates an ungraded Lie subalgebra

i ' R (34)

of t. i is called the internal symmetry algebra of the fundamentalN = 1 superstructuret.

3.2. The fundamentalN = 2 superstructure

Definition 4. The fundamentalN = 2 superstructuret of g is theN = 2 Lie superalgebra
defined by:
1. t is generated byHA, A = 1, 2, I (ξ), ξ ∈ g, whereHA ∈ t−1 andI : g 7→ t−2 is a

linear map;
2. the following commutations relations hold:

[HA, HB ] = 0, [HA, HB,C ] = εABHC,

[HA, H̃B ] = −HA,B, [HA,C, HB,D] = εABHC,D − εDCHB,A,

[HA,C, H̃B ] = −εBCH̃A, [H̃A, H̃B ] = 0. (35e–f)

[I (ξ), I (η)] = 0, [I (ξ), I,A(η)] = 0,

[I (ξ), Ĩ (η)] = I ([ξ, η]), [I,A(ξ), I,B(η)] = εABI ([ξ, η]),

[I,A(ξ), Ĩ (η)] = I,A([ξ, η]), [Ĩ (ξ ), Ĩ (η)] = Ĩ ([ξ, η]), ξ, η ∈ g. (36e–f)

[HA, I (ξ)] = 0, [HA, I,B(ξ)] = εABI (ξ),

[HA, Ĩ (ξ)] = 0, [HA,B, I (ξ)] = εABI (ξ),
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[HA,C, I,B(ξ)] = εABI,C(ξ), [HA,B, Ĩ (ξ)] = 0,

[H̃A, I (ξ)] = −I,A(ξ), [H̃A, I,B(ξ)] = εABĨ (ξ ),

[H̃A, Ĩ (ξ)] = 0. ξ ∈ g. (37a–i)

It is straightforward to verify that the above commutation relations fulfil the graded anti-
symmetry and Jacobi identities.

The componentshA, hA,B, h̃A, i(ξ), i,A(ξ), ĩ(ξ), ξ ∈ g satisfy relations (35)–(37) and
thus are the generators of aZ graded Lie algebra isomorphic tot. Thus,t could be defined
alternatively in this latter way. The definition given above has the advantage of showing
thatt is indeed aN = 2 Lie superalgebra.

To make contact with Ref. [31], one sets

tAB = hA,B + hB,A, k = εKLhK,L, uA = hA, dA = −h̃A, (38a–d)

j (ξ) = i(ξ), jA(ξ) = i,A(ξ), l(ξ) = ĩ(ξ ), ξ ∈ g. (39a–c)

From (35)–(37), one sees thattAB, k, uA, dA, j, jA andl satisfy the relations

[tAC, tBD] = εABtCD + εCBtAD + εADtBC + εCDtBA, [k, tAB] = 0, [k, k] = 0,

(40a–c)

[tAC, uB ] = εABuC + εCBuA, [k, uA] = −uA,

[tAC, dB ] = εABdC + εCBdA, [k, dA] = dA,

[tAB, j (ξ)] = 0, [k, j (ξ)] = −2j (ξ),

[tAC, jB(ξ)] = εABjC(ξ) + εCBjA(ξ), [k, jA(ξ)] = −jA(ξ),

[tAB, l(ξ)] = 0, [k, l(ξ)] = 0, ξ ∈ g, (41a–j)

[uA, uB ] = 0, [dA, uB ] = 1
2(tAB + εABk), [dA, dB ] = 0, (42a–c)

[uA, j (ξ)] = 0, [uA, jB(ξ)] = εABj (ξ),

[uA, l(ξ)] = 0, [dA, j (ξ)] = jA(ξ),

[dA, jB(ξ)] = −εABl(ξ), [dA, l(ξ)] = 0, ξ ∈ g, (43a–f)

[j (ξ), j (η)] = 0, [j (ξ), jA(η)] = 0,

[j (ξ), l(η)] = j ([ξ, η]), [jA(ξ), jB(η)] = εABj ([ξ, η]),

[jA(ξ), l(η)] = jA([ξ, η]), [l(ξ), l(η)] = l([ξ, η]), ξ, η ∈ g. (44a–f)

Note that, from (40),tAB, k generate an ungraded Lie subalgebra

i ' sl(2,R) ⊕ R (45)

of t. i is called the internal symmetry algebra of theN = 2 fundamental superstructuret
and plays an important role.
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4. The Weil algebra

In this section, we shall introduce theN = 1 andN = 2 Weil algebras. As we did in the
case of the fundamentalN = 1 andN = 2 superstructures, we shall not attempt a derivation
from a simpler, more basic set of axioms. Again, their justification lies ultimately in the
applications they have in differential geometry and in topological quantum field theory.

Let g be an ungraded Lie algebra.

4.1. TheN = 1 case

Definition 5. The N = 1 Weil algebraw of g is theN = 1 left supermodule algebra
with unity of theN = 1 fundamental superstructuret of g (cf. Section 3.1) defined by the
following properties:
1. w is derivative;
2. w is generated by 1, W(µ), µ ∈ g∨, whereW : g∨ 7→ w1 is a linear map;
3. the following relations hold:

HW = W, HW̃ = 2W̃ ,

H̃W = −W̃ , H̃ W̃ = 0, (46a–d)

I (ξ)W = ξ, I (ξ)W̃ = −[ξ, W ],

Ĩ (ξ)W = −[ξ, W ], Ĩ (ξ)W̃ = −[ξ, W̃ ], ξ ∈ g, (47a–d)

whereW is viewed as an element ofw ⊗ g.
It is straightforward to verify that the above relations do indeed define aZ graded module
of t.

Note that the components 1, w, w̃ and the component derivationsh, h̃, i(ξ), ĩ(ξ), ξ ∈ g,
satisfy relations (46) and (47). Hence, 1, w, w̃ generate a derivativeZ graded leftt module
algebra with unity isomorphic tow. Thus,w could be defined alternatively in this latter way.
The definition given above shows thatw is indeed anN = 1 t left Lie module superalgebra.

In the standard treatment,w is usually presented as follows. Define

ω = w, φ = w̃ + 1
2[w, w]. (48a,b)

Then, one has

kω = ω, kφ = 2φ, (49a,b)

dω = φ − 1
2[ω, ω], dφ = −[ω, φ], (50a,b)

j (ξ)ω = ξ, j (ξ)φ = 0, l(ξ)ω = −[ξ, ω], l(ξ)φ = −[ξ, φ], ξ ∈ g, (51a,b)

wherek, d, j, l are given by (27) and (28). Note thatω is just another name forw. φ is by
construction ‘horizontal’, i.e. satisfying (51b).
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4.2. TheN = 2 case

Definition 6. The N = 2 Weil algebraw of g is theN = 2 left supermodule algebra
with unity of theN = 2 fundamental superstructuret of g (cf. Section 3.2) defined by the
following properties:
1. w is derivative;
2. w is generated by 1, WA(µ), A = 1, 2, µ ∈ g∨, whereWA : g∨ 7→ w1 is a linear map;
3. the following relations hold:

HAWB = 0, HAWB,C = −εBCWA,

HAW̃B = −WA,B − WB,A, HA,CWB = −εBCWA,

HA,CWB,D = εCBWA,D − εDCWB,A, HA,CW̃B = −εBCW̃A − εACW̃B,

H̃AWB = −WB,A, H̃AWB,C = εACW̃B, H̃AW̃B = 0, (52a–i)

I (ξ)WA = 0, I (ξ)WA,B = εABξ,

I (ξ)W̃A = −[ξ, WA], I,A(ξ)WB = εABξ,

I,A(ξ)WB,C = −εAC[ξ, WB ], I,A(ξ)W̃B = −[ξ, WB,A],

Ĩ (ξ)WA = −[ξ, WA], Ĩ (ξ)WA,B = −[ξ, WA,B ],

Ĩ (ξ)W̃A = −[ξ, W̃A], ξ ∈ g. (53a–i)

whereWA is viewed as an element ofw ⊗ g.

It is straightforward to verify that the above relations do indeed define aZ graded module
of t.

Note that the components 1, wA, wA,B, w̃A and the component derivationshA, hA,B,

h̃A, i(ξ), i,A(ξ), ĩ(ξ), ξ ∈ g, satisfy relations (52) and (53). Hence, 1, wA, wA,B, w̃A gen-
erate a derivativeZ graded leftt module algebra with unity isomorphic tow. Thus,w could
be defined alternatively in this latter way. The definition given above shows thatw is indeed
aN = 2t left Lie module superalgebra.

To make contact with Ref. [31], we shall presentw as follows. Define

ωA = wA, φAB = 1
2(wA,B + wB,A + [wA, wB ]),

γ = −1
2εKLwK,L, ρA = −1

2w̃A − 1
2εKL[wK, wA,L] − 1

6εKL[wK, [wL, wA]] .

(54a–d)

Then, one has

tACωB = εABωC + εCBωA, kωA = ωA,

tACφBD = εABφCD + εCBφAD + εADφBC + εCDφBA, kφAB = 2φAB,

tABγ = 0, kγ = 2γ,

tACρB = εABρC + εCBρA, kρA = 3ρA, (55a–h)
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uAωB = 0, uAφBC = 0,

uAγ = −ωA, uAρB = φAB,

dAωB = −1
2[ωA, ωB ] + φAB − εABγ, dAφBC = −[ωA, φBC] + εABρC

+εACρB,dAγ = −1
2[ωA, γ ] + ρA

+ 1
2εKL[ωK, φLA − 1

6[ωL, ωA]] , dAρB = −[ωA, ρB ]

−1
2εKL[φKA, φLB],

(56a–h)
j (ξ)ωA = 0, j (ξ)φAB = 0,

j (ξ)γ = ξ, j (ξ)ρA = 0,

jA(ξ)ωB = εABξ, jA(ξ)φBC = 0,

jA(ξ)γ = −1
2[ξ, ωA], jA(ξ)ρB = 0,

l(ξ)ωA = −[ξ, ωA], l(ξ)φAB = −[ξ, φAB],
l(ξ)γ = −[ξ, γ ], l(ξ)ρA = −[ξ, ρA], ξ ∈ g, (57a–l)

wheretA,B, k, uA, dA, j, jA, l are given by (38) and (39). Note thatωA is just another name
for wA. γ contains the information abouth̃AwB not exhausted byφAB. By construction
φAB andρA are ‘horizontal’, i.e. satisfy (57b,d,f,h).

5. Superoperations and their cohomologies

Let g be an ungraded Lie algebra.

5.1. N = 1 superoperations and their cohomologies

Definition 7. a is called anN = 1g superoperation if:
1. a is aZ graded left module algebra of the fundamentalN = 1 superstructuret of g

(cf. Section 3.1);
2. the action oft ona is derivative;
3. a is completely reducible under the internal symmetry algebrai of t (cf. Section 3.1), the

spectrum of the invariantk of i is integer and the eigenspaceap of k of the eigenvalue
p ∈ Z is precisely the degreep subspace ofa.

So,a is acted upon by four graded derivationsh, h̃, i(ξ), ĩ(ξ), ξ ∈ g, of degree 0, +1,

−1, 0, respectively, satisfying relations (24)–(26), or, equivalently, by four graded deriva-
tions k, d, j (ξ), l(ξ), ξ ∈ g, of degree 0, +1, −1, 0, respectively, satisfying relations
(29)–(33), the two sets of derivations being related as in (27) and (28).

Proposition 1. If a(r), r = 1, 2,are twoN = 1g superoperations, then their graded tensor
producta = a(1)⊗̂a(2) is also anN = 1g superoperation.

Proof. Indeeda satisfies the conditions stated in Definition 7. �
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Let a be anN = 1g superoperation.
The pair(a, d) is an ordinary differential complex, as the graded derivationd has degree

+1 and [d, d] = 0. Its cohomologyH ∗(a), defined in the usual way by

Hp(a) = (kerd ∩ ap)/dap−1, p ∈ Z, (58)

is the ordinary cohomology of the superoperation. Define

abasic=
⋂
ξ∈g

kerj (ξ) ∩ ker l(ξ). (59)

By (32),abasic is d invariant. So,(abasic, d) is also a differential complex. Its cohomology
H ∗

basic(a)

H
p

basic(a) = (kerd ∩ ap

basic)/dap−1
basic, p ∈ Z, (60)

is the basic cohomology of the superoperation.

Proposition 2. Each nonzero (basic) cohomology class of degreep defines a one-dimensi-
onal representation of the internal Lie algebrai of invariantp.

Proof. Setk[x] = [kx] = p[x] for [x] ∈ Hp(a)([x] ∈ H
p

basic(a)) with arbitrary represen-
tativex ∈ ap(x ∈ ap

basic). �

Though the above proposition is trivial, it is nevertheless interesting because of its non-
trivial generalization to higherN .

5.2. N = 2 superoperations and their cohomologies

Definition 8. a is called anN = 2g superoperation if:
1. a is aZ graded left module algebra of the fundamentalN = 2 superstructuret of g

(cf. Section 3.2);
2. the action oft ona is derivative;
3. a is completely reducible under the internal symmetry algebrai of t (cf. Section 3.2), the

spectrum of the invariantk of i is integer and the eigenspaceap of k of the eigenvalue
p ∈ Z is precisely the degreep subspace ofa.

So, a is acted upon by six graded derivationshA, hA,B , h̃A, i(ξ), i,A(ξ), ĩ(ξ), ξ ∈ g,
of degree−1, 0, +1, −2, −1, 0, respectively, satisfying relations (35)–(37), or, equiva-
lently, by seven graded derivationstAB, k, uA, dA, j (ξ), jA(ξ), l(ξ), ξ ∈ g, of degree
0, 0, −1, +1, −2,−1, 0, respectively, satisfying relations (40)–(44), the two sets of deriva-
tions being related as in (38) and (39).

Besidesk, i possesses another invariant, namely

c = −1
8εKLεMNtKMtLN. (61)
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An irreducible representation ofi is completely characterized up to equivalence by the
values ofc andk, which we parametrize as14(n2 −1) andp, respectively, wheren ∈ N and
p ∈ Z. n is nothing but the dimension of the representation. Being completely reducible
underi, a organizes into irreducible representations ofi. We denote byan,p the eigenspace
of c, k of eigenvalues14(n2 − 1), p, respectively. It follows thata has a finer grading than
the original one.

Proposition 3. If a(r), r = 1, 2,are twoN = 2g superoperations, then their graded tensor
producta = a(1)⊗̂a(2) is also anN = 2g superoperation.

Proof. Indeeda satisfies the conditions stated in Definition 8. �

Let a be anN = 2g superoperation.
The graded derivationsdA have degree+1 and satisfy [dA, dB ] = 0. So, one may define

a double differential complex(a, dA). We do not define cohomology in the usual way, as
the standard definition would not be covariant with respect toi. Instead, we propose the
following definition generalizing that of Ref. [31]. The ordinary cohomologyH ∗(a) is
labelled by the values of the invariantsc, k of i and is defined as

Hn,p(a) = (∩A=1,2kerdA ∩ an,p)/1
2εKLdKdLan,p−2, (n, p) ∈ N× Z. (62)

The basic subspace ofa is defined as

abasic=
⋂
ξ∈g

kerj (ξ) ∩ ∩A=1,2kerjA(ξ) ∩ ker l(ξ). (63)

Using (43d–f), one can show thatabasic is dA invariant. So,(abasic, dA) is also a double
differential complex. Its cohomologyH ∗

basic(a) is defined

H
n,p

basic(a) = (∩A=1,2kerdA ∩ an,p

basic)/
1
2εKLdKdLan,p−2

basic , (n, p) ∈ N× Z, (64)

wherean,p

basic= an,p ∩ abasic, and is the basic cohomology of the superoperation.
The (basic) cohomology of anyN = 2 superoperationa is structurally restricted, as

indicated by the following.

Proposition 4. One has

Hn,p(a) = 0, for p 6= ± n + 1. (65)

Similarly,

H
n,p

basic(a) = 0, for p 6= ± n + 1. (66)

Proof. It is convenient for the time being to revert to the original basishA, hB,C, h̃D of t,
which allows for a more compact notation. Letx ∈ a such that̃hAx = 0. Using (35b,c), it
is easy to show that

[hA + εKLhKhL,A]x − h̃A
1
2εKLhKhLx = 0. (67)
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Apply now h̃B to the left-hand side of this equation and contract withεBA. After a short
calculation exploiting (35c,e), one gets

[−1
2εKLεMNhK,MhL,N + 1

2εKLhK,L]x − 1
2εKLh̃K h̃L

1
2εMNhMhNx = 0. (68)

Using the relationhA,B = 1
2(tAB− εABk), following from (38a,b) and (61) in (68), one gets

finally

[c + 1
4(1 − (k − 1)2)]x − 1

2εKLdKdL
1
2εMNuMuNx = 0. (69)

If x ∈ an,p, (69) yields

1
4[n2 − (p − 1)2]x − 1

2εKLdKdL
1
2εMNuMuNx = 0. (70)

(70) yields (65) immediately. (66) follows also from (70) upon checking that forx ∈ abasic,
1
2εMNhMhNx ∈ abasicas well, by (37a–c). �

Proposition 5. The nontrivial elements ofHn,p(a) (H
n,p

basic(a)) fill irreducible representa-
tions of the internal symmetry algebrai of invariantsn, p.

Proof. By (41c,d), if x ∈ an,p ∩ ∩A=1,2kerdA, then tABx, kx ∈ an,p ∩ ∩A=1,2kerdA

as well. Further, ifx ∈ 1
2εKLdKdLan,p−2, tABx, kx ∈ 1

2εKLdKdLan,p−2, also. One thus
definestAB[x] = [tABx] andk[x] = [kx], for any [x] ∈ Hn,p(a)with arbitrary representative
x ∈ an,p ∩∩A=1,2kerdA. This yields the first part of the proposition. The statement extends
to basic cohomology, by noting thattABx, kx ∈ an,p

basicwheneverx ∈ an,p

basic, by (41e–j).�

Recall that the only irreduciblen dimensional module ofi = sl(2,R) ⊕ R is the com-
pletely symmetric tensor space

∨n−1
R

2 up to equivalence. Hence, one has a tensor factor-
ization of the form

Hn,p(a) = Kn,p ⊗
n−1∨
R

2, (71)

H
n,p

basic(a) = K
n,p

basic⊗
n−1∨
R

2, (72)

for certain vector spacesKn,p, K
n,p

basic.

6. The Weil superoperation and its cohomologies

Let g be an ungraded Lie algebra.

6.1. TheN = 1 case

Let w be theN = 1 Weil algebra ofg (cf. Section 4.1). Then,w is anN = 1g super-
operation (cf. Definition 7) calledN = 1 Weil superoperation. Indeed, as shown in Section
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4.1,w is aZ graded left module algebra of the fundamentalN = 1 superstructuret of g,
the action oft onw is derivative andw is obviously completely reducible under the internal
symmetry algebrai with k acting as the degree operator ofw by (49a,b).

Theorem 1. Hp(w) = 0 for p 6= 0 and

H 0(w) ' R. (73)

Similarly,Hp

basic(w) = 0,for p 6= 2s with s ≥ 0, and

H 2s
basic(w) '

(
s∨
g∨
)

ad∨g
, s ≥ 0, (74)

where(
∨s g∨)ad∨g denotes the subspace of symmetrized tensor product

∨s g∨ spanned by
the elements which are invariant under the coadjoint action ofg.

Proof. Below, we shall use the following notation. Letr ∈ ∧∗ g∨ ⊗∨∗ g∨. Let ξ ∈ 5g,

η ∈ g, where5g is the Grassmann odd partner ofg. We denote byr(ξ, η) the evaluation
of r on

∑
p,q≥0ξ

⊗p ⊗ η⊗q . Every elementz ∈ w is of the formz = r(w, w̃) for some
r ∈ ∧∗ g∨ ⊗ ∨∗ g∨ uniquely determined byz. As degw = 1, degw̃ = 2, wp = 0 for
p < 0 andw0 = R1. Hence,Hp(w) = 0 for p < 0 andH 0(w) ' R, trivially. Let
wp>0 = ⊕p>0wp. wp>0 is acted upon by the graded derivationsh, h̃ and two more graded
derivationsi∗, ĩ∗ of degree−1, 0, respectively, defined by

i∗w = 0, i∗w̃ = w, ĩ∗w = w, ĩ∗w̃ = w̃. (75a–d)

Identify i∗, ĩ∗ with the linear mapsi∗(x) = xi∗, ĩ∗(x) = xĩ∗, x ∈ R. Then,h, h̃, i∗, ĩ∗

satisfy relations (24)–(26) withg = R. It follows thatwp>0 is anN = 1R superoperation.
Switch now to the derivationsk, d, j∗, l∗ defined by (27) and (28). By (32a),j∗ is a homo-
topy operator ford, for l∗ commutes withj∗ andd, by (32b) and (33b), andl∗ is invertible
on wp>0, by (75c,d) and the definition ofwp>0. Thus, the cohomology ofd is trivial on
wp>0. This proves the first part of the theorem. Every elementz ∈ wbasic is of the form
z = r(φ) for somer ∈ (

∨∗ g∨)ad∨g uniquely determined byz. Indeed,z = r(ω, φ) for a
uniquer ∈ ∧∗ g∨ ⊗∨∗ g∨, by an argument similar to that employed earlier, and, by (51),
the basicity conditionsj (ξ)r(ω, φ) = 0, l(ξ)r(ω, φ) = 0 imply thatr has polynomial
degree 0 in the first argument and is ad∨g invariant. It follows thatwp

basic = 0 for p 6= 2s

with s ≥ 0, as degφ = 2. So,Hp

basic(w) = 0 for p 6= 2s with s ≥ 0. Let s ≥ 0. If
z = r(φ) with r ∈ (

∨s g∨)ad∨g, then dz = 0, by (50b) and the ad∨g invariance ofr. Hence,
w2s

basic∩ kerd = w2s
basic. We thus have a linear injectionµ : w2s

basic∩ kerd 7→ (
∨s g∨)ad∨g

given byz 7→ r. As,w2s−1
basic = 0, µ induces a linear bijection̂µ : H 2s

basic(w) 7→ (
∨s g∨)ad∨g.

�

6.2. TheN = 2 case

Let w be theN = 2 Weil algebra ofg (cf. Section 4.2). Then,w is anN = 2g super-
operation (cf. Definition 8) calledN = 2 Weil superoperation. Indeed, as shown in Section
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4.2,w is aZ graded left module algebra of the fundamentalN = 2 superstructuret of g,
the action oft onw is derivative andw is obviously completely reducible under the internal
symmetry algebrai with k acting as the degree operator ofw by (55).

Theorem 2. Hn,p(w) = 0, for (n, p) 6= (1, 0), and

H 1,0(w) ' R. (76)

Similarly,Hn,p

basic(w) = 0, for (n, p) 6= (1, 0), (2s, 2s + 1) with s > 0, and

H
1,0
basic(w) ' R, H

2s,2s+1
basic (w) '

(
s∨
g∨
)

ad∨g
⊗

2s−1∨
R

2, s > 0. (77)

Proof. Below, we shall use the following notation. Letr ∈ ∧∗
(g∨ ⊗ ⊗⊗⊗a

R
2) ⊗∨∗

(g∨ ⊗
⊗⊗⊗b
R

2). Let ξ ∈ 5g⊗ ⊗⊗⊗a
R

2∨, η ∈ g⊗⊗⊗b
R

2∨. We denote byr(ξ, η) the evaluation ofr on∑
p,q≥0ξ

⊗p ⊗ η⊗q . The above notation can be straightforwardly generalized to the case
where there are severalξ andη. Every elementz ∈ w is of the formz = r(w, w,, w̃) for some
r ∈ ∧∗

(g∨⊗R2)⊗∨∗
(g∨⊗⊗⊗⊗2

R
2)⊗∧∗

(g∨⊗R2) uniquely determined byz. As degwA =
1, degwA,B = 2, degw̃A = 3, wn,p = 0, forp < 0, andwn,0 = Rδn,11. So,Hn,p(w) = 0,
for p < 0, andHn,0(w) ' δn,1R, trivially. Let wp>0 = ⊕⊕⊕n∈N,p>0wn,p. wp>0 is acted
upon by the graded derivationshA, hA,B , h̃A and three more graded derivationsi, i,A, ĩ of
degree−2, −1, 0, respectively, defined by

i∗wA = 0, i∗wA,B = 0, i∗w̃A = wA,

i∗,AwB = 0, i∗,AwB,C = −εCAwB, i∗,Aw̃B = wB,A,

ĩ∗wA = wA, ĩ∗wA,B = wA,B, ĩ∗w̃A = w̃A. (78a–i)

Identify i∗, i∗,A, ĩ∗ with the linear mapsi∗(x) = xi∗, i∗,A(x) = xi∗,A, ĩ∗(x) = xĩ∗, x ∈
R. Then,hA, hA,B, h̃A, i, i,A, ĩ satisfy relations (35)–(37) withg = R. From this fact, it
is easy to see thatwp>0 is anN = 2R superoperation. Switch now to the derivations
tA,B, k, uA, dA, j∗, j∗

A, l∗ defined by (38) and (39). By (43e),j∗
A is a homotopy operator

for dA, for l∗ commutes withj∗
A anddA, by (43f) and (44e), andl∗ is invertible onwp>0,

by (78g–i) and the definition ofwp>0. Indeed, using (43e,f) and (44e), one can show that

[ 1
2εKLdKdL, 1

2εMNj∗
Mj∗

N ] = −l∗(l∗ + εKLj∗
KdL), (79)

where, by (41g,h),12εMNj∗
Mj∗

N mapswn,p intown,p−2. Thus, the cohomology ofdA is trivial
onwp>0. This proves the first part of the theorem. Let us examine next the second part. As
wn,p = 0, forp < 0, andwn,0 = Rδn,11, as shown earlier, and 1 is obviously basic,wn,p

basic=
0, forp < 0, andwn,0

basic= Rδn,11. Consequently,Hn,p

basic(w) = 0 forp < 0. andHn,0
basic(w) '

δn,1R. On the other hand, by Proposition 4, Eq. (66),H
n,p

basic(w) = 0 for p 6= ±n + 1. So,

the only potentially nonvanishing cohomology spaces which are left areH
n,n+1
basic (w), n ≥ 1,

which we shall analyze next. Every elementz ∈ wbasic is of the formz = r(φ, ρ) for
somer ∈ (

∨∗
(g∨ ⊗∨2

R
2) ⊗∧∗

(g∨ ⊗R2))ad∨g uniquely determined byz. Indeed,z =
r(ω, γ, φ, ρ), for a uniquer ∈ ∧∗

(g∨ ⊗R2)⊗∨∗ g∨ ⊗∨∗
(g∨ ⊗∨2

R
2)⊗∧∗

(g∨ ⊗R2),



316 R. Zucchini / Journal of Geometry and Physics 35 (2000) 299–332

by an argument similar to that employed earlier in the proof, and, by (57), the basicity
conditionsj (ξ)r(ω, γ, φ, ρ) = 0, jA(ξ)r(ω, γ, φ, ρ) = 0, l(ξ)r(ω, γ, φ, ρ) = 0 imply
that r has polynomial degree 0 in the first two arguments and is adg invariant. Letz =
r(φ, ρ) ∈ wn,n+1

basic . From (55c,d,g,h) and the representation theory ofi = sl(2,R) ⊕R, one
knows that the total number of internal indicesA = 1, 2 and the total degree carried by
φAB, ρA in each monomial ofr(φ, ρ) must ben − 1 + 2ν andn + 1, respectively, where
2ν is the number of indices contracted by means ofεAB. Further, then − 1 uncontracted
indices are totally symmetrized. So, the numbersmφ, mρ of occurrences ofφAB, ρA in a
given monomial must satisfy the equations 2mφ +1mρ = n−1+2ν, 2mφ +3mρ = n+1.
Taking into account thatmφ, mρ are nonnegative integers, one finds thatν = 0, mφ =
s − 1, mρ = 1, for n = 2s with s ≥ 1, andν = 1, mφ = s, mρ = 0, for n = 2s − 1 with
s ≥ 2. Thus, the most generalz ∈ wn,n+1

basic is of the form

z = uA1···A2s−1(φA1As , . . . , φAs−1A2s−2, ρA2s−1), n = 2s, s ≥ 1, (80)

z = 1
2εKLvA1···A2s−2(φA1As−1, . . . , φAs−2A2s−4φA2s−3KφA2s−2L), n = 2s − 1, s ≥ 2,

(81)

whereuA1···A2s−1 ∈ (
∨s−1 g∨ ⊗g∨)ad∨g totally symmetric inA1, . . . , A2s−1, v

A1···A2s−2 ∈
(
∨s−2 g∨⊗∧2 g∨)ad∨g totally symmetric inA1, . . . , A2s−2. Suppose now thatz ∈ wn,n+1

basic ∩
∩A=1,2kerdA so thatz, besides being of the form (80) and (81), satisfiesdAz = 0. Suppose
first thatn = 2s. Using (80) and (56f,h), the symmetry properties and the adg invariance
of uA1···A2s−1 and taking into account that terms with a different number of occurrences of
φAB, ρA are linearly independent, the conditiondAz = 0 is equivalent to the equations

εAAs−1u
A1···A2s−1(φA1As , . . . , φAs−2A2s−3, ρA2s−2, ρA2s−1) = 0, (82)

1
2εKLuA1···A2s−1(φA1As , . . . , φAs−1A2s−2, [φKA2s−1, φLA]) = 0. (83)

As ρA is odd anduA1···A2s−1 is totally symmetric inA1, . . . , A2s−1, (82) entails that
uA1···A2s−1 is totally symmetric in itss arguments. Using this fact and the adg invari-
ance ofuA1···A2s−1, it is easy to see that (83) is identically satisfied. Hence,uA1···A2s−1 ∈
(
∨s g∨)ad∨g. Conversely, if this holds, then (82) and (83) are fulfilled. The above anal-

ysis shows thatw2s,2s+1
basic ∩ ∩A=1,2kerdA is precisely the space of thez of the form (80)

with uA1···A2s−1 ∈ (
∨s g∨)ad∨g totally symmetric inA1, . . . , A2s−1. Thus, we have a lin-

ear bijectionµ : w2s,2s+1
basic ∩ ∩A=1,2kerdA 7→ (

∨s g∨)ad∨g ⊗∨2s−1
R

2 defined byz 7→
(uA1···A2s−1)A1,... ,A2s−1=1,2. We note next thatw2s,2s−1

basic = 0. Indeed, ifz = r(φ, ρ) ∈
wn,n−1

basic , the total number of internal indicesA = 1, 2 and the total degree carried by
φAB, ρA in each monomial ofr(φ, ρ) must ben − 1 + 2ν andn − 1, respectively, where
2ν is the number of indices contracted by means ofεAB. So, the numbersmφ, mρ of
occurrences ofφAB, ρA in a given monomial must satisfy the equations 2mφ + 1mρ =
n − 1 + 2ν, 2mφ + 3mρ = n − 1. Taking into account thatmφ, mρ are nonnegative in-
tegers, one finds that there are no solutions forn = 2s with s > 0, so thatw2s,2s−1

basic =
0 as announced. Thus, the bijectionµ above induces a bijection̂µ : H

2s,2s+1
basic (w) 7→
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(
∨s g∨)ad∨g ⊗ ∨2s−1

R
2. Suppose next thatn = 2s − 1. Using (81) and (56f,h), the

(anti)symmetry properties and the adg invariance ofvA1···A2s−2, the conditiondAz = 0 is
equivalent to the equation

(s − 2)εKLεAAs−2v
A1···A2s−2(φA1As−1, . . . , φAs−3A2s−5, ρA2s−4, φA2s−3K, φA2s−2L)

+vA1···A2s−2(φA1As−1, . . . , φAs−2A2s−4, ρA2s−3, φA2s−2A)

+εKLεAA2s−3v
A1···A2s−2(φA1As−1, . . . , φAs−2A2s−4, ρK, φA2s−2L) = 0. (84)

Now, applyuB to this relation, using (56b,d), and then contract withεBA. One gets then
1
2εKLvA1···A2s−2(φA1As−1, . . . , φAs−2A2s−4φA2s−3KφA2s−2L) = 0. So,z = 0. We conclude

thatw2s−1,2s
basic ∩ ∩A=1,2kerdA = 0. Thus,H 2s−1,2s

basic (w) = 0 as well. �

6.3. The relation between the cohomologies of theN = 1 andN = 2 Weil superoperations

Let w(n) denote theN = n Weil superoperations,n = 1, 2.

Corollary 1. One has

Hn,±n+1(w(2)) ' H±(n−1/2)+1/2(w(1)) ⊗
n−1∨
R

2, (85)

H
n,±n+1
basic (w(2)) ' H

±(n−1/2)+1/2
basic (w(1)) ⊗

n−1∨
R

2. (86)

Proof. Combine Theorems 1 and 2. �

Thus, theN = 1 andN = 2 cohomologies ofw are intimately related.

7. Connections, equivariant cohomology and Weil homomorphism

Let g be an ungraded Lie algebra.

7.1. TheN = 1 case

Let a be anN = 1g superoperation with unity, i.e.a as an algebra has a unity 1.

Definition 9. A connectiona on a is an element ofa ⊗ g satisfying relations (49a) and
(51a,c) withω substituted bya.

The curvature ofa is defined as usual as

f = da+ 1
2[a, a]. (87)
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It is easy to see thatf satisfies relations (49b) and (51b,d) withφ substituted byf . In
particular, beingj (ξ)f = 0 for anyξ ∈ g, f is horizontal.a, f together fulfil (50).

We denote by Conn(a) the set of the connections of theN = 1g superoperationa.
Conn(a) is an affine space modelled ona1 ⊗ g.

Proposition 6. Let r ∈ ∧∗ g∨ ⊗ ∨∗ g∨ be such that, for any connectiona ∈ Conn(a),

r(a, f ) is a representative of some element ofH
p

basic(a) (see above Eq.(75)for the definition
of the notation). Then, the basic cohomology class[r(a, f )] is independent from the choice
of a.

Proof. We follow the methods of Ref. [32]. Consider theN = 1 superoperations generated
by s, s̃ of degree 0, +1, respectively, with

hss = 0, hs s̃ = s̃,

h̃ss = −s̃, h̃s s̃ = 0,
(88a–d)

is(ξ) = 0, ĩs(ξ) = 0, ξ ∈ g. (89a,b)

Next, we consider the graded tensor product superoperations⊗̂a and the subalgebrac of
s⊗̂a generated by the elements of the forma(s), h̃sa(s), ã(s), h̃s ã(s), wherea : R 7→ a⊗g
is a polynomial such that, for fixedσ ∈ R, a(σ ) is a connection ona andã(σ ) = −h̃a(σ ).
Next, we define a degree 0 derivationq onc by

qa(s) = 0, qã(s) = −h̃sa(s),

qh̃sa(s) = 0, qh̃s ã(s) = 0.
(90a–d)

Note that, for fixedσ ∈ R, a(σ ), ã(σ ) satisfy relations (46) and (47) withw, w̃ replaced
by a(σ ), ã(σ ). Using this fact, one easily checks that

[q, h̃] = h̃s , [q, h̃s ] = 0, (91a,b)

[q, h + hs ] = 0, (92)

[q, i(ξ)] = 0, [q, ĩ(ξ)] = 0, ξ ∈ g. (93a,b)

Let r ∈ ∧∗ g∨ ⊗∨∗ g∨ be such that, for any connectiona on a, r[a] := r(a, ã) belongs
to abasic∩ ker h̃. By (91a) and the fact that̃hr[a] = 0,

h̃sr[a(s)] = −h̃qr[a(s)]. (94)

We note that, by (88c,d) and (90a,b),qr[a(s)] is necessarily of the formqr[a(s)] =
s̃α(s|a), whereα(s|a) is a polynomial ins. From this expression and (88a,b), it follows
thathsqr[a(s)] = qr[a(s)]. By (92), one has then

hqr[a(s)] = q(h − 1)r[a(s)]. (95)

Further, from (93) and the fact thati(ξ)r[a] = 0, ĩ(ξ)r[a] = 0,

i(ξ)qr[a(s)] = 0, ĩ(ξ)qr[a(s)] = 0, ξ ∈ g. (96a,b)
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For any elementx of s⊗̂a of the formx = s̃α(s) with α(s) a polynomial ins, we define∫
[0,1]x = ∫ 1

0 α(σ) dσ , where the right-hand side is an ordinary Riemann integral. It is

obvious that, for any element off (s) of s⊗̂a polynomial ins, h̃sf (s) is of the above form
and −∫[0,1]h̃

sf (s) = f (1) − f (0). From (94), one has thus

r[a(1)] − r[a(0)] = h̃

∫
[0,1]

qr[a(s)]. (97)

By (27b), the right-hand side of (97) belongs toda. From (27a), (95) and (96), ifr[a]
belongs toap

basic for any connectiona on a, thenqr[a(σ )] belongs toap−1
basic for σ ∈ R, so

that
∫

[0,1]qr[a(s)] belongs toap−1
basic, too. �

Consider theN = 1 Weil g superoperationw (cf. Section 6.1). Thenω is a connection
onw with curvatureφ (cf. Eq. (48)).

Given anN = 1g superoperationa with unity, one can define the graded tensor product
N = 1g superoperationw⊗̂a (cf. Section 5.1). The latter is the equivariantN = 1 su-
peroperation associated toa. The equivariant cohomology ofa is, by definition the basic
cohomology ofw⊗̂a:

H
p

equiv(a) = H
p

basic(w⊗̂a), p ∈ Z. (98)

An equivariant cohomology class ofa is represented by elements ofw⊗̂a of the form
r(ω, φ), wherer ∈ ∧∗ g∨ ⊗ ∨∗ g∨ ⊗ a. The Weil generatorω constitutes a connection
of w⊗̂a. If a is a connection ofa, a is a connection ofw⊗̂a as well. By Proposition 6,
r(ω, φ) is equivalent tor(a, f ) in equivariant cohomology. On the other hand,r(a, f ) is
a representative of a basic cohomology class ofa, which, by Proposition 6, is independent
from a in basic cohomology. Thus, there is a natural homomorphism ofH ∗

equiv(a) into

H
p

basic(a), calledN = 1 Weil homomorphism.

7.2. TheN = 2 case

Let a be anN = 2g superoperation with unity.

Definition 10. A connection(aA)A=1,2, on a is a doublet ofa ⊗ g satisfying relations
(55a,b), (56a), (57a,e,i) withωA substituted byaA.

The derived connection

b = 1
2εKLdKaL (99)

and the curvature and derived curvature

fAB = 1
2(dAaB + dBaA + [aA, aB ]),

gA = −1
4εKLdKdLaA − 1

2εKL[aK, dLaA] − 1
6εKL[aK, [aL, aA]] (100a,b)



320 R. Zucchini / Journal of Geometry and Physics 35 (2000) 299–332

satisfy relations (55c–h) and (57b–d,f–h,j–l) withγ, φAB, ρA substituted byb, fAB, gA,
respectively. In particular, beingj (ξ)fAB = 0, jA(ξ)fBC = 0, j (ξ)gA = 0, jA(ξ)gB = 0
for anyξ ∈ g, fAB, gA are horizontal.aA, b, fAB, gA together satisfy (56b–h).

We denote by Conn(a) the set of connections of theN = 2 superoperationa. Conn(a)

is an affine space modelled ona2,1 ⊗ g.

Proposition 7. Let r ∈ ∧∗
(g∨ ⊗ R2) ⊗∨∗ g∨ ⊗∨∗

(g∨ ⊗∨2
R

2) ⊗∧∗
(g∨ ⊗ R2) be

such that, for any connection(aA)A=1,2 ∈ Conn(a), r(a, b, f, g) is a representative of
some element ofHn,p

basic(a) (see aboveEq. (78)for the definition of the notation). Then, the
basic cohomology class[r(a, b, f, g)] is independent from the choice of(aA)A=1,2.

Proof. We generalize the methods of Ref. [32]. Consider theN = 2 superoperations
generated bys, s,A, s̃ of degree 0, +1, +2, respectively, with

hs
As = 0, hs

As,B = 0,

hs
As̃ = −s,A, hs

A,Bs = 0,

hs
A,Cs,B = −εBCs,A, hs

A,B s̃ = −εABs̃,

h̃s
As = −s,A, h̃s

As,B = εABs̃,

h̃s
As̃ = 0, (101a–i)

is(ξ) = 0, is,A(ξ) = 0, ĩs(ξ) = 0, ξ ∈ g. (102a–c)

Next, we consider the graded tensor product superoperations⊗̂a and the subalgebrac
of s⊗̂a generated by the elements of the formaA(s), h̃s

AaB(s), h̃s
Ah̃s

BaC(s), aA,B(s),

h̃s
AaB,C(s), h̃s

Ah̃s
BaC,D(s), ãA(s), h̃s

AãB(s), h̃s
Ah̃s

B ãC(s), whereaA : R 7→ a⊗g, A = 1, 2,
is a polynomial such that, for fixedσ ∈ R, aA(σ ) is a connection ofa andaA,B(σ ) =
−h̃BaA(σ ), ãA(σ ) = 1

2εKLh̃K h̃LaA(σ ). Next, we define a degree 0 derivationq onc by

qaA(s) = 0, qaA,B(s) = −h̃s
BaA(s),

qãA(s) = −εKLh̃s
KaA,L(s), qh̃s

AaB(s) = 0,

qh̃s
AaB,C(s) = εAC

1
2εKLh̃s

K h̃s
LaB(s), qh̃s

AãB(s) = 1
2εKLh̃s

K h̃s
LaB,A(s),

q 1
2εKLh̃s

K h̃s
LaA(s) = 0, q 1

2εKLh̃s
K h̃s

LaA,B(s) = 0,

q 1
2εKLh̃s

K h̃s
LãA(s) = 0. (103a–i)

Note that, for fixedσ ∈ R, a(σ ), aA(σ ), ã(σ ) satisfy relations (52) and (53) withw, wA, w̃

replaced bya(σ ), aA(σ ), ã(σ ). Using this fact, one easily checks that

[q, h̃A] = h̃s
A, [q, h̃s

A] = 0, (104a,b)

[q, hA,B + hs
A,B ] = 0, (105)

[q, i(ξ)] = 0, [q, i,A(ξ)] = 0, [q, ĩ(ξ)] = 0, ξ ∈ g. (106a–c)

Using (104a), it is easy to show that

[q, 1
2εKLh̃K h̃L] = εKLh̃s

K h̃L, 1
2[q, [q, 1

2εKLh̃K h̃L]] = 1
2εKLh̃s

K h̃s
L. (107a,b)
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Let r ∈ ∧∗
(g∨ ⊗R2)⊗∨∗

(g∨ ⊗⊗2
R

2)⊗∧∗
(g∨ ⊗R2) be such that, for any connection

aA, A = 1, 2, ona, r[a] := r(a, a,, ã) belongs toabasic∩ ∩A=1,2ker h̃A. Using (107) and
the fact that̃hAr[a] = 0, it is easy to see that

1
2εKLh̃s

K h̃s
Lr[a(s)] = 1

2εKLh̃K h̃L
1
2q2r[a(s)]. (108)

We note that, by (101g–i) and (103a–f),1
2q2r[a(s)] is necessarily of the form1

2q2r[a(s)] =
s̃α(s|a)+ 1

2εKLs,Ks,Lβ(s|a), whereα(s|a), β(s|a) are polynomials ins. From this expres-
sion and (101d–f), it follows thaths

A,B
1
2q2r[a(s)] = −εAB

1
2q2r[a(s)]. By (105), one has

then

hA,B
1
2q2r[a(s)] = 1

2q2(hA,B + εAB)r[a(s)]. (109)

Further, from (106) and the fact thati(ξ)r[a] = 0, i,A(ξ)r[a] = 0, ĩ(ξ)r[a] = 0,

i(ξ)1
2q2r[a(s)] = 0, i,A(ξ)1

2q2r[a(s)] = 0, ĩ(ξ)1
2q2r[a(s)] = 0, ξ ∈ g.

(110a–c)

For any elementx of s⊗̂a of the form x = s̃α(s) + 1
2εKLs,Ks,Lβ(s) with α(s), β(s)

polynomials ins, we define
∫

[0,1]x = ∫ 1
0 α(σ) dσ , where the right-hand side is an ordinary

Riemann integral. It is not difficult to show that, for any element off (s) of s⊗̂a polynomial
in s, 1

2εKLh̃s
K h̃s

Lf (s) is of the above form and
∫

[0,1]
1
2εKLh̃s

K h̃s
Lf (s) = f (1) − f (0). From

(108),

r[a(1)] − r[a(0)] = 1

2
εKLh̃K h̃L

∫
[0,1]

1

2
q2r[a(s)]. (111)

By (38d), the right-hand side of (111) belongs to1
2εKLdKdLa. From (38a,b), (109) and

(110), if r[a] belongs toan,p

basic for any connectionaA on a, then 1
2q2r[a(σ )] belongs to

an,p−2
basic for σ ∈ R, so that

∫
[0,1]

1
2q2r[a(s)] belongs toan,p−2

basic , too. �

Consider theN = 2 Weil g superoperationw (cf. Section 6.2). Then,ωA is a connection
of w with derived connectionγ and curvature and derived curvatureφAB, ρA (cf. Eq. (54)).

Given anN = 2g superoperationa, one can define the graded tensor productN = 2g
superoperationw⊗̂a (cf. Section 5.2). The latter is the equivariantN = 2 superoperation
associated toa. The equivariant cohomology ofa is by definition the basic cohomology of
w⊗̂a:

H
n,p

equiv(a) = H
n,p

basic(w⊗̂a), (n, p) ∈ N× Z. (112)

An equivariant cohomology class ofa is represented by elements ofw⊗̂a of the form
r(ω, γ, φ, ρ), wherer ∈ ∧∗

(g∨ ⊗R2)⊗∨∗ g∨ ⊗∨∗
(g∨ ⊗∨2

R
2)⊗∧∗

(g∨ ⊗R2)⊗ a.
The Weil generatorωA constitutes a connection ofw⊗̂a. If aA is a connection ofa, aA is
a connection ofw⊗̂a as well. By Proposition 7,r(ω, γ, φ, ρ) is equivalent tor(a, b, f, g)

in equivariant cohomology. On the other hand,r(a, b, f, g) is a representative of a basic
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cohomology class ofa, which, by Proposition 7, is independent fromaA in basic cohomol-
ogy. Thus, there is a natural homomorphism ofH

n,p

equiv(a) into H
n,p

basic(a), calledN = 2 Weil
homomorphism.

8. Superoperations of a smooth manifold with a group action

Let M be a smoothm dimensional manifold. Thus,M is endowed with a collection of
smooth charts(Ua, xa), a ∈ A, in the usual way. LetM carry the right action of a Lie group
G with Lie algebrag (see Ref. [33] for an exhaustive treatment of the theory of manifolds
with a group action).

Let s be a Grassmann algebra such thats0 ' R.

8.1. N = 1 differential geometry

Definition 11. An N = 1 differential structure onM is a collection{(Ua, Xa)|a ∈ A},
where
1. {Ua|a ∈ A} is an open covering ofM;
2. for eacha ∈ A, Xa : Ua 7→ (S0

1)
m andxa = Xa|θ=0 : Ua 7→ R

m is a coordinate ofM;
3. for a, b ∈ A such thatUa ∩ Ub 6= ∅, Xa = xa ◦ x−1

b (Xb).

Below, we shall omit the chart indicesa, b, . . . except when dealing with matching
relations.

We write as usual

Xi = xi + θx̃i , X̃i = x̃i , (113a,b)

wherexi : U 7→ R, x̃i : U 7→ s1.
We introduce theN = 1 covariant superderivatives

Di = ∂̃xi + θ∂xi, D̃i = ∂xi, (114a,b)

where∂̃xi = ∂/∂x̃i . One has relations

[Di, Dj ] = 0, [Di, D̃j ] = 0, [D̃i, D̃j ] = 0. (115a–c)

Further,

DiX
j = 0, DiX̃

j = δ
j
i , D̃iX

j = δ
j
i , D̃iX̃

j = 0. (116a–d)

Using (113), it is straightforward to check that relations (116) completely characterize
Di, D̃i .

The transformation properties ofXi under chart changes, stated in Definition 11, imply
that

X̃i
a = X̃

j
bD̃bjX

i
a. (117)

Using that (116) completely characterizeDi, D̃i , one can show easily that they match as

Dai = D̃aiX
j
bDbj, D̃ai = D̃aiX̃

j
bDbj + D̃aiX

j
bD̃bj. (118a,b)
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We denote byF the sheaf of germs of smoothN = 1 functions onM generated by
Xi, X̃i . By definition, a generic elementF ∈ F(U) is a finite sum of the formF =∑

p≥0φi1···ip ◦ XX̃i1 · · · X̃ip for certain smooth mapsφi1···ip : Rm 7→ R antisymmetric in
i1, . . . , ip. It is easy to see that

F =
m∑

p=0

[Fi1···ip + θ∂xi0Fii ···ip x̃i0]x̃i1 · · · x̃ip , (119)

whereFi1···ip = φi1···ip ◦ x. Hence,F is completely determined byf = F |θ=0.
F has a natural grading corresponding to the totals degree of̃xi .
We define onUa ∩ Ub 6= ∅,

Zab
i
j = D̃bjX

i
a. (120)

It is easy to see thatZ is a GL(m,F) 1-cocycle onM. Z is called the fundamental
1-cocycle of theN = 1 differential structure. One can introduce in standard fashion the
sheafFr,s := F(Z⊗r ⊗ Z∨⊗s) of germs of smoothN = 1 sections ofZ⊗r ⊗ Z∨⊗s . We
denote byfr,s the vector space of sections ofFr,s onM.

z = Z|θ=0 is nothing but the tangent bundle 1-cocycle ofM. By (113b), (117) and (119),
fpr,s can be identified with the space of smooth typer, s tensor valued differentialp-forms
onM.

We are particularly interested in the spacef0,0, which is a graded algebra.
We define

H = X̃iDi, H̃ = −X̃iD̃i . (121a,b)

Using (117) and (118), it is easy to see thatH, H̃ are globally defined derivations onf0,0.
Denoting bycξ the fundamental vector field onM induced byξ ∈ g, we define further

I (ξ) = CiξDi, Ĩ (ξ) = CiξD̃i + X̃j D̃jC
iξDi, (122a,b)

whereCξ is the element off01,0 corresponding tocξ given explicitly byCiξ = ciξ +
θx̃j ∂xjc

iξ . By (118a) and (120),I (ξ), Ĩ (ξ) are also globally defined derivations onf0,0.
Using the relationDiC

jξ = 0, it is now straightforward to verify thatH, H̃ , I , Ĩ satisfy
relations (24)–(26). In this way,f0,0 becomes aZ graded left module algebra of theZ graded
Lie algebrat (cf. Section 3.1).

Thus,f := f0,0 acquires the structure ofN = 1g superoperation (cf. Definition 7), the
relevant graded derivations being

h = x̃i ∂̃xi, h̃ = −x̃i∂xi, (123a,b)

i(ξ) = ciξ ∂̃xi, ĩ(ξ) = ciξ∂xi + x̃j ∂xjc
iξ ∂̃xi. (124a,b)

This superoperation is canonically associated to theN = 1 differential structure.
Now, from (117) and (119), it appears that the graded algebraf is isomorphic to the graded

algebra of ordinary differential forms onM. Under such an isomorphism, the derivations
k, d, j (ξ), l(ξ), defined in (27) and (28), correspond to the form degreekdR, the de Rham
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differentialddR, the contractionjdR(ξ)and the Lie derivativeldR(ξ), respectively. Therefore,
the above is nothing but a reformulation of the customary theory of differential forms, so that,
in particular, the (basic) cohomology off is isomorphic to the (basic) de Rham cohomology.

Theorem 3. There is an isomorphism of theN = 1 (basic) cohomology off the de Rham
(basic) cohomology of the(G) manifoldM. Indeed, one has thatHp(f) = 0 (H

p

basic(f) = 0),
except perhaps for0 ≤ p ≤ m, and

Hp(f) ' H
p

dR(M), 0 ≤ p ≤ m, (125)

H
p

basic(f) ' H
p

dR basic(M), 0 ≤ p ≤ m. (126)

Proof. See the above remarks. �

Recall that a connectiony on theG spaceM is ag valued 1 form satisfying relations
(49a) and (51a,c) withj, l, ω substituted byjdR, ldR, y, respectively [33]. We denote by
Conn(M) the affine space of the connections onM.

Theorem 4. One has

Conn(f) ' Conn(M) (125)

(cf. Definition9).

Proof. Any a ∈ f1 ⊗ g is locally of the forma = ai x̃
i , whereai is a g valued smooth

map. Defineλ(a) = aiddRxi . Then, by the above remarks,λ(a) is a connection ofM if and
only if a is a connection off. The mapλ is obviously a bijection. �

8.2. N = 2 differential geometry

Definition 12. An N = 2 differential structure onM is a collection{(Ua, Xa)|a ∈ A},
where
1. {Ua|a ∈ A} is an open covering ofM;
2. for eacha ∈ A, Xa : Ua 7→ (S0

2)
m andxa = Xa|θ=0 : Ua 7→ R

m is a coordinate ofM;
3. for a, b ∈ A such thatUa ∩ Ub 6= ∅, Xa = xa ◦ x−1

b (Xb).

Below, we shall omit the chart indicesa, b, . . . except when dealing with matching
relations.

We write as usual

Xi = xi + θAxi
,A + 1

2εKLθKθLx̃i , Xi
,A = xi

,A + εAKθKx̃i, X̃i = x̃i , (128a–c)

wherexi : U 7→ R, xi
,A : U 7→ s1, x̃i : U 7→ s2.

We introduce theN = 2 covariant superderivatives

Di = ∂̃xi + εKLθK∂
,L
xi + 1

2εKLθKθL∂xi, Di,A = εAK(∂
,K
xi + θK∂xi), D̃i = ∂xi,

(129a–c)
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where∂
,A
xi = ∂/∂xi

,A, ∂̃xi = ∂/∂x̃i . One has

[Di, Dj ] = 0, [Di, Dj,A] = 0, [Di, D̃j ] = 0,

[Di,A, Dj,B ] = 0, [Di,A, D̃j ] = 0, [D̃i, D̃j ] = 0. (130a–f)

Further,

DiX
j = 0, DiX

j
,A = 0, DiX̃

j = δ
j
i , Di,AXj = 0, Di,AX

j
,B = εABδ

j
i ,

Di,AX̃j = 0, D̃iX
j = δ

j
i , D̃iX

j
,A = 0, D̃iX̃

j = 0. (131a–i)

By (128), relations (131) completely characterizeDi, Di,A, D̃i .
The transformation properties ofXi under chart changes, stated in Definition 12, imply

that

Xa
i
,A = Xb

j
,AD̃bjXa

i, X̃a
i = X̃b

j D̃bjXa
i+1

2εJKXb
j
,J Xb

k
,KD̃bjD̃bkXa

i. (132a,b)

Using that (131) completely characterizeDi, Di,A, D̃i , one can show easily that they match
as

Dai = D̃aiXb
jDbj, Dai,A = D̃aiXb

j
,ADbj + D̃aiXb

jDbj,A,

D̃ai = D̃aiX̃b
jDbj + εKLD̃aiXb

k
,KDbk,L + D̃aiXb

j D̃bj. (133a–c)

We denote byF the sheaf of germs of smoothN = 2 functions onM generated by
Xi, Xi

,A, X̃i . By definition, a generic elementF ∈ F(U) is a finite sum of the form

F = ∑
p,q≥0f

I1···Ip

i1···ipip+1···ip+q
◦ XXi1

,I1 · · · Xip
,Ip X̃ip+1 · · · X̃ip+q for certain smooth maps

f
I1···Ip

i1···ipip+1···ip+q
: Rm 7→ R antisymmetric in the pairs(i1, I1), . . . , (ip, Ip) and symmetric

in ip+1, . . . , ip+q . It is straightforward though tedious to show that

F =
2m∑
p=0

q0∑
q=0

{FI1···Ip

i1···ipip+1···ip+q
xi1

,I1x
i2
,I2

+θK [δI0
K ∂i0F

I1···Ip

i1···ipip+1···ip+q
xi0

,I0x
i1
,I1x

i2
,I2 − pεKI1F

I1···Ip

i1···ipip+1···ip+q
xi2

,I2x̃
i1]

+1
2εKLθKθL[ 1

2εI−1I0∂i−1∂i0F
I1···Ip

i1···ipip+1···ip+q
xi−1

,I−1x
i0
,I0x

i1
,I1x

i2
,I2

+∂i0F
I1···Ip

i1···ipip+1···ip+q
xi1

,I1x
i2
,I2x̃

i0 − pδ
I0
I1

∂i0F
I1···Ip

i1···ipip+1···ip+q
xi0

,I0x
i2
,I2x̃

i1

+1
2p(p − 1)εI1I2F

I1···Ip

i1···ipip+1···ip+q
x̃i1x̃i2]}xi3

,I3 · · · xip
,Ip x̃ip+1 · · · x̃ip+q , (134)

whereF
I1···Ip

i1···ipip+1···ip+q
= f

I1···Ip

i1···ipip+1···ip+q
◦ x. Notice thatF is completely determined by

f = F |θ=0.
F has a natural grading corresponding to the totals degree ofxi

,I , x̃
i .

We define onUa ∩ Ub 6= ∅,

Zab
i
j = D̃bjX

i
a. (135)
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It is easy to see thatZ is a GL(m,F) 1-cocycle onM. Z is called the fundamental 1
cocycle of theN = 2 differential structure. One can introduce in standard fashion the sheaf
Fr,s := F(Z⊗r ⊗ Z∨⊗s) of germs of smoothN = 2 sections ofZ⊗r ⊗ Z∨⊗s . We denote
by fr,s the vector space of sections ofFr,s onM.

z = Z|θ=0 is nothing but the tangent bundle 1-cocycle ofM. However, unlike theN = 1
case, there is no simple geometrical interpretation of the spacesfpr,s .

We are particularly interested in the spacef0,0, which is a graded algebra.
We define

HA= − Xi
,ADi, HA,B = Xi

,ADi,B − εABX̃iDi H̃A = X̃iDi,A−sXi
,AD̃i . (136a–c)

Using (132) and (133), it is easy to see thatHA, HA,B, H̃A are globally defined derivations
on f0,0.

We set next

I (ξ) = CiξDi, I,A(ξ) = X
j
,AD̃jC

iξDi + CiξDi,A,

Ĩ (ξ) = [X̃j D̃jC
iξ + 1

2εKLXk
,KXl

,LD̃kD̃lC
iξ ]Di + εKLXk

,KD̃kC
iξDi,L + CiξD̃i,

(137a–c)

whereCξ is the element off01,0 corresponding tocξ and is given explicitly byCiξ =
ciξ + θKx

j
,K∂xjc

iξ + 1
2εKLθKθL[x̃j ∂xjc

iξ + 1
2εMNx

j
,Mxk

,N∂xj∂xkc
iξ ]. By (133a) and (135),

I (ξ), I,A(ξ), Ĩ (ξ) are globally defined derivations onf0,0.
Using the relationDiC

jξ = 0, Di,ACj ξ = 0, it is now straightforward to verify that
HA, HA,B, H̃A, I, I,A, Ĩ satisfy relations (35)–(37). In this way,f0,0 becomes aZ graded
left module algebra of theZ graded Lie algebrat (cf. Section 3.2).

Thus,f := f0,0 acquires the structure ofN = 2g superoperation (cf. Definition 8), the
relevant graded derivations being

hA = −xi
,A∂̃xi, hA,B = xi

,AεBL∂
,L
xi − εABx̃i ∂̃xi, h̃A = x̃iεAL∂

,L
xi − xi

,A∂xi,

(138a–c)

i(ξ) = ciξ ∂̃xi, i,A(ξ) = ciξεAL∂
,L
xi + x

j
,A∂xjc

iξ ∂̃xi,

ĩ(ξ) = ciξ∂xi + x
j
,K∂xjc

iξ∂
,K
xi + [x̃j ∂xjc

iξ + 1
2εKLxk

,Kxl
,L∂xk∂xlc

iξ ]∂̃xi. (139a–c)

This superoperation is canonically associated to theN = 2 differential structure.
In spite of the fact that, in theN = 2 case,f does not have any simple geometrical

interpretation, unlike itsN = 1 counterpart, the (basic) cohomology off in theN = 2 case
has essentially the same content as that of theN = 1 case and a theorem analogous to
Theorem 3 holds.

Theorem 5. There is an isomorphism of theN = 2 (basic) cohomology off the de Rham
(basic) cohomology of the(G) manifoldM. Indeed, one has thatHn,p(f) = 0(H

n,p

basic(f) =
0), except perhaps for(n, p) = (1, 0), (r, r + 1) with 1 ≤ r ≤ m, and



R. Zucchini / Journal of Geometry and Physics 35 (2000) 299–332 327

H 1,0(f) ' H 0
dR(M), Hr,r+1(f) ' Hr

dR(M) ⊗
r−1∨
R

2, 1 ≤ r ≤ m, (140a,b)

H
1,0
basic(f) ' H 0

dR basic(M), H
r,r+1
basic (f) ' Hr

dR basic(M) ⊗
r−1∨
R

2, 1 ≤ r ≤ m.

(141a,b)

Proof. By Proposition 4,Hn,p(f) = 0 (H
n,p

basic(f) = 0) except perhaps forp = ±n + 1. On
the other hand, from the definition off, given above,fn,p = 0 for p < 0. So,Hn,p(f) =
0 (H

n,p

basic(f) = 0) except perhaps for(n, p) = (1, 0), (r, r + 1) with 1 ≤ r. Consider
first the case where(n, p) = (1, 0). From (136b) and the representation theory ofi =
sl(2,R) ⊕R, it is immediate to see thatf1,0 consists precisely of theF of the formF = α

for some smooth functionα on M and thatf1,−2 = 0. Further, the conditionsdAF = 0 is
equivalent toddRα = 0, hence to the local constance ofα. We thus have a linear bijection
ν : f1,0 ∩ ∩A=1,2kerdA 7→ Z0

dR(M), whereZr
dR(M) is the space of closedr forms, given

by F 7→ α. Beingf1,−2 = 0, (140a) follows. (141a) also holds, as, clearly,f1,0 = f1,0
basicand

Z0
dR(M) = Z0

dR basic(M). Consider next the case where(n, p) = (r, r + 1) with 1 ≤ r.
Let F ∈ fr,r+1. From (136b) and the representation theory ofi = sl(2,R) ⊕R, F is locally
of the form

F = x
i1
,A1

· · · xir−1
,Ar−1

[x̃ir α
A1···Ar−1
i1···ir−1ir

+ 1
2εMNx

ir
,Mx

ir+1
,N β

A1···Ar−1
i1···ir−1ir ir+1

] (142)

withα
A1···Ar−1
i1···ir−1ir

a smooth map symmetric inA1, . . . , Ar−1 and antisymmetric ini1, . . . , ir−1

andβ
A1···Ar−1
i1···ir−1ir ir+1

a smooth map symmetric inA1, . . . , Ar−1, antisymmetric ini1, . . . , ir−1

and symmetric inir , ir+1. Next, assume thatdAF = 0. Substituting (142) into the relation
dAF = 0 and taking into account the fact that terms with different numbers ofxi

,I , x̃
i

are linearly independent and, thus, must vanish separately, one gets the following three
identities

x
i1
,A1

· · · xir−2
,Ar−2

x̃ir−1x̃ir α
A1···Ar−1
i1···ir−1ir

= 0, (143)

(r − 1)εAAr−1x
i1
,A1

· · · xir−2
,Ar−2

1
2εMNx

ir
,Mx

ir+1
,N x̃ir−1β

A1···Ar−1
i1···ir−1ir ir+1

+x
i1
,A1

· · · xir−1
,Ar−1

[−x
ir
,Ax̃ir+1β

A1···Ar−1
i1···ir−1ir ir+1

+ x
ir+1
,A x̃ir ∂xir+1α

A1···Ar−1
i1···ir−1ir

] = 0, (144)

x
i1
,A1

· · · xir−1
,Ar−1

1
2εMNx

ir
,Mx

ir+1
,N x

ir+2
,A ∂xir+2β

A1···Ar−1
i1···ir−1ir ir+1

= 0. (145)

From (143), using the symmetry properties ofα
A1···Ar−1
i1···ir−1ir

and the fact thatxi
,A, x̃i are odd,

even, respectively, it follows immediately thatα
A1···Ar−1
i1···ir−2ir−1ir

+ α
A1···Ar−1
i1···ir−2ir ir−1

= 0. Since

α
A1···Ar−1
i1···ir−1ir

is already antisymmetric ini1, . . . , ir−1, α
A1···Ar−1
i1···ir is antisymmetric in all the

indicesi1, . . . , ir . Thus, for fixedA1, . . . , Ar−1, the α
A1···Ar−1
i1···ir are the coefficients of a
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local r form αA1···Ar−1. Next, applying the derivationuB (cf. Eq. (138a)) to Eq. (144) and
contracting withεBA, one gets

x
i1
,A1

· · · xir−1
,Ar−1

1
2εMNx

ir
,Mx

ir+1
,N β

A1···Ar−1
i1···ir−1ir ir+1

= 2

r + 1
x

i1
,A1

· · · xir−1
,Ar−1

1
2εMNx

ir
,Mx

ir+1
,N ∂xir+1α

A1···Ar−1
i1···ir−1ir

. (146)

Applying dA to this relation, one gets

(r − 1)εAAr−1x
i1
,A1 · · · xir−2

,Ar−2
1
2εMNxir

,Mxir+1
,N x̃ir−1β

A1···Ar−1
i1···ir−1ir ir+1

−xi1
,A1 · · · xir−1

,Ar−1x
ir
,Ax̃ir+1β

A1···Ar−1
i1···ir−1ir ir+1

= 2
r − 1

r + 1
εAAr−1x

i1
,A1 · · · xir−2

,Ar−2
1
2εMNxir

,Mxir+1
,N x̃ir−1∂xir+1α

A1···Ar−1
i1···ir−1ir

− 1

r + 1
xi1

,A1 · · · xir−1
,Ar−1x

ir
,Ax̃ir+1(∂xir+1α

A1···Ar−1
i1···ir−1ir

+ ∂xir α
A1···Ar−1
i1···ir−1ir+1

),

(147)

xi1
,A1 · · · xir−1

,Ar−1
1
2εMNxir

,Mxir+1
,Nxir+2

,A∂xir+2β
A1···Ar−1
i1···ir−1ir ir+1

= 2

r + 1
xi1

,A1 · · · xir−1
,Ar−1

1
2εMNxir

,Mxir+1
,Nxir+2

,A∂xir+1∂xir+2α
A1···Ar−1
i1···ir−1ir

. (148)

Substituting (147) and (148) into (144) and (145), respectively, one obtains after a straight-
forward calculation the equations

xi1
,A1 · · · xir−1

,Ar−1x
ir+1

,Ar+1x̃
ir

r+1∑
l=1

(−1)l−1∂xil α
A1···Ar−1
i1···il−1il+1···ir+1

= 0, (149)

xi1
,A1 · · · xir−1

,Ar−1
1
2εMNxir

,Mxir+1
,Nxir+2

,A∂xir+1∂xir+2α
A1···Ar−1
i1···ir−1ir

= 0. (150)

Using the symmetry properties ofα
A1···Ar−1
i1···ir−1ir

and the fact thatxi
,A, x̃i are odd, even, respec-

tively, it is easy to see that (149) implies that
∑r+1

l=1 (−1)l−1∂xil α
A1···Ar−1
i1···il−1il+1···ir+1

= 0 or

ddRαA1···Ar−1 = 0 so that the localr form αA1···Ar−1 is closed and locally exact. By this
reason and the fact thatxi

,I ∂xix
j
,J ∂xjx

k
,K∂xk = 0 by antisymmetry, one finds that Eq. (150)

is automatically satisfied. We note that, by (132a) and the global definition ofF , it is easy
to see the local exactr form αA1···Ar−1 is the local restriction of a globally defined closed
r form, which will be denoted by the same symbol. To summarize, we have shown that
(143)–(145) imply that, for fixedA1, . . . , Ar−1, αA1···Ar−1 is a closedr form and that (146)
holds. Conversely, assume that for fixedA1, . . . , Ar−1,αA1···Ar−1 is a closedr form and that
(146) holds. Using (132a,b), it is straightforward though tedious to show thatF , as given
by (142), belongs tofr,r+1. As shown above, (146) implies (147) and (148) using which
Eqs. (144) and (145) become equivalent to Eqs. (149) and (150). Eqs. (143), (149) and
(150), are trivially satisfied by the closedr form αA1···Ar−1. Thus, (143)–(145) are satisfied
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as well implying thatdAF = 0. In conclusion, we have shown thatfr,r+1 ∩ ∩A=1,2kerdA

consists precisely of the elementsF ∈ fr,r+1 of the form

F = x
i1
,A1

· · · xir−1
,Ar−1

[
x̃ir α

A1···Ar−1
i1···ir−1ir

+ 2

r + 1

1

2
εMNx

ir
,Mx

ir+1
,N ∂xir+1α

A1···Ar−1
i1···ir−1ir

]
(151)

with αA1···Ar−1 an r form symmetric inA1, . . . , Ar−1 and such thatddRαA1···Ar−1 = 0.
We thus have a linear bijectionν : fr,r+1 ∩ ∩A=1,2kerdA 7→ Zr

dR(M) ⊗∨r−1
R

2, where
Zr

dR(M) is the space of closedr forms, given byF 7→ (αA1···Ar−1)A1,... ,Ar−1=1,2. Next,
assume thatF ∈ 1

2εKLdKdLfr,r−1. Then,F = 1
2εKLdKdLG for someG ∈ fr,r−1. From

(136b) and the representation theory ofi = sl(2,R) ⊕ R, G is of the form

G = x
i1
,A1

· · · xir−1
,Ar−1

γ
A1···Ar−1
i1···ir−1

, (152)

withγ
A1···Ar−1
i1···ir−1

a smooth map symmetric inA1, . . . , Ar−1 and antisymmetric ini1, . . . , ir−1.
By a straightforward computation, one finds that

1

2
εKLdKdLG = (−1)r−1x

i1
,A1

· · · xir−1
,Ar−1

[
x̃ir

r∑
l=1

(−1)l−1∂xil γ
A1···Ar−1
i1···il−1il+1···ir−1ir

+ 2

r+1

1

2
εMNx

ir
,Mx

ir+1
,N ∂xir+1

r∑
l=1

(−1)l−1∂xil γ
A1···Ar−1
i1···il−1il+1···ir−1ir

]
. (153)

Note thatγ A1···Ar−1
i1···ir−1

are the coefficients of a localr − 1 formγ A1···Ar−1. By (132a) and the

global definition ofG, γ A1···Ar−1 is the restriction of a globally definedr−1 form, which we
shall denote by the same symbol. As (153) indicates, the linear mapν maps cohomologically
trivial elements offr,r+1∩∩A=1,2kerdA into cohomologically trivial elements ofZr

dR(M)⊗∨r−1
R

2. Thus,ν induces a linear bijection̂ν : Hr,r+1(f) 7→ Hr
dR(M) ⊗∨r−1

R
2. Next,

assume thatF ∈ fr,r+1
basic and thatdAF = 0. In particular,F is of the form (151) for some

closedr formαA1···Ar−1 symmetric inA1, . . . , Ar−1. By (43d,e) and the relationdAF = 0,
the basicity ofF is equivalent to the relationj (ξ)F = 0,ξ ∈ g, wherej (ξ), by (39a), is
given in the present situation by (139a). A simple computation shows that this identity is
equivalent to

x
i1
,A1

· · · xir−1
,Ar−1

cir ξα
A1···Ar−1
i1···ir−1ir

= 0. (154)

As is straightforward to check, this relation entails thatci0ξα
A1···Ar−1
i0i1···ir−1

= 0, so thatjdR(ξ)

αA1···Ar−1 = 0. As ldR(ξ) = [ddR, jdR(ξ)] and ddRαA1···Ar−1 = 0, the closedr form
αA1···Ar−1 is basic. Conversely, ifαA1···Ar−1 is basic (154) obviously holds. So, the linear
bijectionν introduced earlier mapsfr,r+1

basic ∩ ∩A=1,2kerdA into Zr
dR basic(M) ⊗∨r−1

R
2,

whereZr
dR basic(M) is the space of closed basicr forms. LetG ∈ fr,r−1

basic . Then,G is of the
form (152) and satisfiesj (ξ)G = 0, jA(ξ)G = 0, l(ξ)G = 0, wherej (ξ), jA(ξ) andl(ξ)

are defined by (39) and are given by (139). It is straightforward to see that these identities
yield the equations

εAAr−1x
i1
,A1

· · · xir−2
,Ar−2

cir−1ξγ
A1···Ar−1
i1···ir−1

= 0, (155)
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x
i1
,A1

· · · xir−1
,Ar−1

[
r−1∑
l=1

∂xil c
ir ξγ

A1···Ar−1
i1···il−1ir il+1···ir−1

+ cir ξ∂xir γ
A1···Ar−1
i1···ir−1

]
= 0. (156)

Thus,ci0ξγ
A1···Ar−1
i0i1···ir−2

= 0,
∑r-1

l=1∂xil c
ir ξγ

A1···Ar−1
i1···il−1ir il+1···ir−1

+ cir ξ∂xir γ
A1···Ar−1
i1···ir−1

= 0, as is

easy to see, so thatjdR(ξ)γ A1···Ar−1 = 0 andldR(ξ)γ A1···Ar−1 = 0 andγ A1···Ar−1 is basic.
Conversely the basicity ofγ A1···Ar−1 implies (155) and (156). From (152) and (153), we
see thatν maps cohomologically trivial elements offr,r+1

basic ∩ ∩A=1,2kerdA into cohomo-

logically trivial elements ofZr
dR basic(M) ⊗ ∨r−1

R
2. Thus,ν induces a linear bijection

ν̂ : H
r,r+1
basic (f) 7→ Hr

dR basic(M) ⊗∨r−1
R

2. �

A theorem analogous to Theorem 4 also holds.

Theorem 6. One has

Conn(f) ' Conn(M) (157)

(cf. Definition10).

Proof. From the representation theory ofi = sl(2,R) ⊕R, anyaA ∈ f2,1 ⊗ g is locally of
the formaA = ai x̃

i
,A, whereai is ag valued smooth map. Defineλ((aA)A=1,2) = aiddRxi .

Then, from (139), it is easy to see thatλ((aA)A=1,2) is a connection ofM if and only if
(aA)A=1,2 is a connection off. The mapλ is clearly a bijection. �

8.3. The relation between theN = 1 andN = 2 cohomologies off

Let f(n) denote the superoperationf for N = n, n = 1, 2, as defined in Sections 8.1 and
8.2.

Corollary 2. One has

Hn,±n+1(f(2)) ' H±(n−1/2)+1/2(f(1)) ⊗
n−1∨
R

2, (158)

H
n,±n+1
basic (f(2)) ' H

±(n−1/2)+1/2
basic (f(1)) ⊗

n−1∨
R

2. (159)

Proof. Combine Theorem 3 and Theorem 5. �

Thus, theN = 1 andN = 2 cohomologies off are closely related. Note the analogy to
relations (85) and (86).

Corollary 3. One has

Conn(f(2)) ' Conn(f(1)). (160)

Proof. Combine Theorem 4 and Theorem 6. �
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Thus, theN = 1 andN = 2 connections off are manifestations of the same geometrical
structure.

9. Concluding remarks

There are a few fundamental questions which are still open and which are of considerable
salience both in geometry and topological field theory.

Corollaries 1 suggest that a relation formally analogous to (159) should hold also between
theN = 1 andN = 2 equivariant cohomologies off (cf. Section 7). Further, from (160), we
expect that the range of theN = 1 andN = 2 Weil homomorphisms (cf. Sections 7.1 and
7.2) should have essentially the same content. This question is of fundamental importance
to show conclusively that balanced topological gauge field theory does not contain new
topological observables besides those coming from the underlyingN = 1 theory. We have
not been able to either prove or disprove such assertions yet.

There are other possible lines of inquiry. It is known that theN = 1 Maurer–Cartan
equations of a Lie algebrag can be obtained from theN = 1 Weil algebra relation (50) by
formally settingφ = 0. By a similar procedure, one can obtain theN = 2 Maurer–Cartan
equations by formally settingφAB = 0, ρA = 0 in theN = 2 Weil algebra relations (56).
Indeed, it is straightforward to check that the basic relation [dA, dB ] = 0 still holds after
this truncation. This hints to a possibleN = 2 generalization of gauge fixing.

Finally, note that, by obtaining theN = 2 Weil algebra, we are in the position of formu-
lating other models of equivariant cohomology in balanced topological field theory besides
Cartan’s used in [31], generalizing theN = 1 intermediate or BRST model of [7,8].

We leave these matters to future work.
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