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Abstract

We present a detailed algebraic study of the- 2 cohomological set-up describing the balanced
topological field theory of Dijkgraaf and Moore. We emphasize the rol&/ of 2 topological
supersymmetry and(2, R) internal symmetry by a systematic use of superfield techniques and of an
s[(2, R) covariant formalism. We provide a definition 8f = 2 basic and equivariant cohomology,
generalizing Dijkgraaf’'s and Moore’s, and 8f = 2 connection. For a general manifold with a
group action, we show that: (i) th€ = 2 basic cohomology is isomorphic to the tensor product
of the ordinaryN = 1 basic cohomology and a univers&l2, R) group theoretic factor; (ii) the
affine spaces oW = 2 andN = 1 connections are isomorphic. © 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Topological quantum field theories are complicated, often fully interacting, local renor-
malizable field theories, yet they can be solved exactly and the solution is highly nontrivial.
Expectation values of topological observables provide topological invariants of the mani-
folds on which the fields propagate. These invariants are independent from the couplings
and to a large extent from the interactions between the fields. At the same time, topological
field theories are often topological sectors of ordinary field theories. In this way, they are
convenient testing grounds for subtle nonperturbative field theoretic phenomena. See, e.g.,
Refs. [1-3] for an updated comprehensive review on the subject and complete referencing.

N = 1 cohomological topological field theories have been the object of intense and
exhaustive study. They can be understood in the framework of equivariant cohomology
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of infinite dimensional vector bundles [4-9] and realized as Mathai—Quillen integral rep-
resentations of Euler classes [10-13]. The resulting formalism is elegant and general and
covers the important case where the quotient by the action of a gauge symmetry group is
required. Each of these models describes the differential topology of a certain moduli space,
depending on the model considered: the field theoretic correlation functions of topological
observables correspond to intersection numbers on the moduli space.

N = 2 cohomological topological field theories were discovered quite early [14-17],
but they did not arouse much interest until recently when it became clear that they might
provide important clues in the analysis $fluality in supersymmetric Yang—Mills theory
and in the study of the world volume theoriespfbranes in string theory.

In Ref. [18], Vafa and Witten performed an exact strong coupling test dfiality of
N = 4 supersymmetric 4-dimensional Yang—Mills theory by studying a topological twist
of the model yielding av = 2 cohomological field theory. They showed that the partition
function isZ(r) = ) ,ar exp(2ritk), whereay is the Euler characteristic of the mod-
uli space ofk instantons, and testesi duality by analyzing the modularity properties of
Z (7). Their work, inspired by the original work of Yamron [14], was soon developed and
refined in a series of papers [19-24]. In Ref. [25], Bershadsky et al. showed that the three
N = 2 cohomological topological field theories obtained by the nontopological twistings
of N = 4 supersymmetric 4-dimensional Yang—Mills theory arose from curved 3-branes
embedded in Calabi—Yau manifolds and manifolds with exceptional holonomy groups.
Their analysis was continued and further developed in Refs. [21,26—28], where the con-
nection with higher dimensional instantons was elucidated. In Ref. [29], Park constructed
a family of Yang—Mills instantons fronb-instantons in topological twisted = 4 super-
symmetric 4-dimensional Yang—Mills theory. In Ref. [30], Hofman and Park worked out
a 2-dimensionaN = 2 cohomological topological field theory as a candidate for covari-
ant second quantized RNS superstrings, which they conjectured to be a formulation of
theory.

All the endeavors mentioned above, and many other related ones, which we cannot
mention for lack of space, show that = 2 cohomological topological field theories are
relevant in a variety of physical and mathematical issues. In spite of that, the body of
literature devoted to the study of the geometry of such models is comparatively small. In
Ref. [17], Blau and Thompson worked out a Riemannian formulatiavi ef 2 topological
gauge theory usingy = 2 topological superfield techniques. In Ref. [31], Dijkgraaf and
Moore showed that all knowtv = 2 topological models were examples of “balanced
topological field theories” and developed a cohomological framework suitable for their
study. In Ref. [21], Blau and Thompson proved the equivalence of their earlier formulation
and Dijkgraaf's and Moore’s. These studies show that the partition function of avery
2 topological model calculates the Euler characteristic of some moduli space of vanishing
virtual dimension. They also indicate that the appropriate conomological scheme is provided
by N = 2 basic or equivariant cohomology. The present paper aims at a systematic study
of the latter developing the ideas of [31].

In general, a cohomological topological field theory is characterized by a symmetry Lie
algebrag, a graded algebra of fieldsnd a set of graded derivations bgenerating a Lie
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algebra. In turn, the topological algebtarovides the algebraic and geometric framework
for the definition of the topological observables [1].

As is well known, inN = 1 cohomological topological field theoryis generated by four
derivationsk, d, j(§),1(§), & € g, of degrees 01, —1, O, respectively, obeying the graded
commutation relations given by Eqgs. (29)—(33) belbvs the ghost number operataris
the nilpotent topological chargg(é), I(¢) describe the action of the symmetry Lie algebra
g on fields. The elementg € f are classified into the eigenspadésp € Z, of k. The
N = 1 basic degre@ cohomology off is defined by

JjEa =0, [Ea=0, &eg, da=0, 1
a=a+dp, Bef™h jEB=0 1EB=0, fecg, )
with o € fP.

TheN = 1 Weil algebrav, an essential element of the definition of thie= 1 equivariant
cohomology of, is generated by twg valued fieldsv, ¢ of degrees 1,2, respectivetyacts
onw according to (49)—(51) below.

k,d, j(&),1(¢) can be organized into twdy = 1 topological superderivation

H=k—0d, 3)

1(§) = j) +01(), §eag. (4)

The Lie algebra structure ofis compatible with the underlyingy = 1 topological super-
symmetry, since the commutation relationd on be written in terms of the superderiva-
tions H, I (¢). Similarly, w, ¢ can be organized into thevalued superfield

W=w+0— 3w o). (5)

The action of onw can be written in terms of the superderivatighs/ (£) and the superfield
W in a manifestlyN = 1 supersymmetric way.

Analogously, inN = 2 cohomological topological field theorlyjs generated by seven
gradedderivations,, A = 1, 2,tag, A, B=1, 2,symmetricim, B, k,ds, A =1, 2, j (&),
ja€), A =121(&),& € g, of degrees-1,0,0, 1, —2, —1, O, respectively, obeying the
graded commutation relations (40)—(44) below. Zheare a sort of homotopy operators and
constrain the cohomology éfdefined shortly, to an important extent. Tlag andk are the
generators of the internal(2, R) & R symmetry Lie algebra df Thed, are the nilpotent
topological chargesi.(&), ja(§), [(§) describe the action of the symmetry Lie algepn
fields. The elements < f are classified into the eigenspadég,n € N, p € Z, of the
invariantse, k of the internal algebrsl(2, R) @ R. The N = 2 basic type:, p cohomology
of f is defined by

JEa =0, jaEa=0 I[Ea=0 §eg, draa=0, (6)

a=ao-+ %GKLdeLﬂ, B e fn’p727 j)B =0,
ja@)B=0, 1EBL=0 ¢£&eg, (7)
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wherea € 7. It is possible to show, using the basic relatidn [ug] = %(IAB + eagk),
that this cohomology is trivial fop # +n + 1.
The N = 2 Weil algebraw, entering the definition oV = 2 equivariant cohomology,
is generated by foug valued fieldswas, A = 1, 2, ¢aB, A, B = 1, 2, symmetric inA, B,
v, pa, A =1, 2, of degrees 1,2,2,3, respectivalpcts orw according to (55)-(57).
ua,tpg, k,da, j(€), ja(€),1(§) canbeorganizedintotw®¥ = 2topological superderiva-
tion

Ha =ua+ 30" (tak — eaxk) — Jex 050" da, (8)
1€) = j&) + 0% jx &) + Jex 0%0L18), £eg. 9)

The Lie algebra structure afis compatible with the underlyingg = 2 topological su-
persymmetry, since the commutation relationst @an be written in terms of the su-
perderivationsH 4, 1(¢). Similarly, wa, ¢as, ¥, p4 Can be organized into thg valued
superfield

Wa = wa + 05 (dak + eay — %[wA, wk]) + %6MN9M9N(—2pA — Mk, ¢all
+oa. y] + 36 ok, (oL, 4])). (10)

The action oft on w can be written in terms of the superderivatialg, I (¢) and the
superfieldW, in a manifestlyN = 2 supersymmetric way.

In the first part of this paper, we study the topological algetznad the Weil algebrav
abstractly bothinthe&y = 1andintheV = 2 case. We show that their structure is essentially
dictated by rather general requirements of closure and topological supersymmetry, which
can be defined for any value &f. In the second part of the paper, we define basic and
equivariant cohomology, abstract connections and the Weil homomorphism both in the
N = 1andintheN = 2 case and study some of their properties. Finally, in the third part
of the paper, we study the cohomology of manifolds carrying a right group action and show
that, in this important case, thé = 2 type(k, k + 1) basic cohomology is isomorphic to
the tensor product of th¥ = 1 degree basic cohomology and the completely symmetric
tensor space/k‘1 R? and that the affine spaces df = 2 andN = 1 connections are
isomorphic.

Throughout the paper, we stress the role of topological supersymmetry, also because we
feel that, on this score, confusing claims have appeared in the literature. This has allowed us
to discover the derivationsy andk introduced above, which are not mentioned in Ref. [31],
but which are required by = 2 topological supersymmetry and constrain structurally the
N = 2 cohomology.

The definition of N = 2 basic cohomology given above is more general than that
used in Ref. [31], which is limited to the important case whare= 1. In our judge-
ment, this definition is more appropriate, yielding the aforementioned fundamental relation
between theV = 1 andN = 2 basic cohomologies of manifolds with a right group
action.

This paper is organized as follows. We have tried to highlight the similarities and the
differences of theV = 1 andN = 2 cases in order to show in what sense the latter is a
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generalization of the former. In Section 2, we briefly review the basic facts of the theory
of superalgebras and supermodules. In Section 3, we introduck¥ thel andN = 2
topological algebras. In Section 4, we introduce the= 1 andN = 2 Weil algebras.

In Section 5, we define the relevant notionsdf= 1 andN = 2 (basic) cohomology.

In Section 6, we study th&¢ = 1 andN = 2 Weil superoperations and their (basic)
cohomology and derive the relation betwg€én= 1 andN = 2 cohomology. In Section 7,

we defineN = 1 andN = 2 abstract connections, equivariant cohomology and the related
Weil homomorphism. In Section 8, we apply our algebraic setup to studytkel and

N = 2 (basic) cohomology of manifolds carrying a right group action and work out the
relation betweev = 1 andN = 2 cohomologies. Finally, Section 9 outlines future lines
of inquiry.

2. Superalgebras and supermodules

2.1. Z graded algebras and the corresponding superalgebras

We begin by stipulating the following.

All the vector spaces, algebras and modules considered in this paper are real.

If sis aZ graded space, we denote §fythe subspace afof degreek € Z. If s =s0, s
is called ungraded.

Let NV € N. Let#4, A = 1,..., N, be aN-tuple of Grassmann odd generators which
are conventionally assigned degreg:

0408 + 0894 =0, A,B=1,... ,N; degp*=-1, A=1...,N. (11)

The64 generate a Grassmann algelrga[6]. The derivatives, = 3/96, are degree-1
graded derivations onl y [6].

Let v be aZ graded space. Th¥ superspac¥y associated t@ is the graded tensor
product space

Vy = An[6]®V (12)

with the canonicdl. grading. Given & graded algebra, one can define th¥ superalgebra
Ay in similar fashion. Note thal, extends to a degreel graded linear operator ofy
and to a degree-1 graded derivation oAy .

Definition 1. A Z graded space is called anV superspace if:

1. thereis & graded space such thak is isomorphic to a subspace\d§; invariant under
all 0A;

2. there is a minimal subspaocg of x such thatx = Ay[d]x., where Ay[0] is the
Grassmann algebra of polynomials of the derivatiéns

The notion of N superalgebra can be given foZaraded algebra in analogous fashion.

X« (8) is the generating subspace (subalgebra)aj.
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Definition 2. A Z graded left modulen of aZ graded algebrais ann left a supermodule
if:

1. ais anN superalgebra;

2. mis anN superspace;

3. thed, are graded derivations with respect to the module multiplication.

The notion of N supermodule algebra can be given in analogous fashion.

In this paper, we are mostly concerned withgraded Lie algebras. X graded Lie
algebral is aZ graded algebra whose product is graded antisymmetric and satisfies the
graded Jacobi identity.

For aZ graded Lie algebrhaZ graded left module algebran with unity 1 is derivative
if the action ofl onm obeys the graded Leibniz rule.

2.2. TheN =1, 2 cases

In this paper, we concentrate on the cades= 1, 2. In this subsection, we introduce
notation suitable for these specidlvalues.

Leta be aZ graded algebra.

Let N = 1. In this case, one can s&t = ¢ for simplicity. If X Af for somep € Z,
thenX is of the form

X =x+6x (13)
with x € a” andi € a”*1. Note that

x = X|o=0. (14)
Denotingd = /96, we define

X =0X. (15)
Clearly, X € A?**. Indeed,

X =%. (16)

Let N = 2.1f X € A} for somep € Z, thenX is of the form

X =x+0% 4+ Jex 050t 5 (17)
with x € a”, x 4 € a?*! andi € a?*2.1 Note that

x = X|g=0. (18)
Denotingds = 3/364, we define

X 4=04X. (29)

1 The totally antisymmetric symboleag, €*B are normalized so thaks] = |€1?] = 1 ande*Kexp =
KA _ A
epre ™ = ‘SB'
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Clearly, X 4 € A5™. Indeed,

XA =xa+eax i, (20)
So,

x4 =X alo—o. (21)
Finally, we set

X = 3eakaLx. (22)
Clearly, X € A}, as

X =% (23)

3. Fundamental superstructures

In this section, we shall introduce the fundamem¥al= 1 andN = 2 superstructures.
We shall present them without attempting a derivation from a simpler, more basic set of
axioms. Though this would be desirable, it would bring us to far afield. Their justification
lies ultimately in the applications they have in differential geometry and, in the infinite
dimensional case, in topological quantum field theory.

Let g be an ungraded Lie algebra.

3.1. The fundamenta&¥y = 1 superstructure

Definition 3. The fundamentaV = 1 superstructureof g is theN = 1 Lie superalgebra
defined by

1. tis generated by, 1 (¢), & € g, whereH e t®andI : g — t~1is a linear map;

2. the following commutation relations hold:

[H H =0, [H ,Hl=H, [H H]=0, (24a—c)
[1&), 1M1 =0, [1®&),I(m]=1(E, D,

(&), Im] =I1(& D, Emneg, (25a—c)
[H. I1&)]=-1¢), [HI1&]=0,

[H 1®]=—1¢), [H 1§]=0 £cg (26a—d)

It is straightforward to verify that the above commutation relations fulfil the graded anti-
symmetry and Jacobi identities.

The components, , i (£),i(£), £ € g satisfy relations (24)—(26) and thus are the gen-
erators of aZ graded Lie algebra isomorphic toThus,t could be defined alternatively
in this latter way. The definition given above shows thiat indeed aV = 1 Lie super-
algebra.
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More customarily, one sets

k=h, d=—h, (27a,b)
j®=i®, 1©=i®, feg (28a,b)
From (24)—(26), one sees thatd, j and! satisfy the relations

[k, k] =0, (29)
[k.d]=d, [k j@&)]=—j@,

[k, 1(§)] =0, §eg, (30a—c)
[d,d] =0, (31)
[d, j&)]=1). [d,1(§)] =0, §eg, (32a,b)
&, iml =0, [j&).lm]= (& nD,

[1&), 1(m] = L([&, nD). E,neg. (33a—c)

Note that, by (29)k generates an ungraded Lie subalgebra
i~R (34)

of t. iis called the internal symmetry algebra of the fundamentat 1 superstructure
3.2. The fundamenta&¥ = 2 superstructure

Definition 4. The fundamentaV = 2 superstructureof g is theN = 2 Lie superalgebra

defined by:

1. tis generated byds, A = 1,2, 1(£),£ € g, whereHy et 1andl : g+ t2isa
linear map;

2. the following commutations relations hold:

[Ha, Hpl =0, [Ha, Hpc] = ensHc,

[Ha, Hp)l = —Ha ., [Ha.c, Hp.p] = engHc,p — €ocHg, A,

[Hac. Hg]l = —escHa. [Ha, Hp] =0. (35e—f)
[1&), 1] =0, [I),1a(m] =0,

[1@E), Tl =1 1D,  [La®), 15(D] = easl (€, 1)),

[1AE), I] =LA@ 0D, UE, Il =1(& ),  Enecg  (36e)
[Ha. 1(5)] =0, [Ha. 1p()] = easl €),

[Ha, I(£)] =0, [Ha.p, 1(€)] = ensl (£),
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[Hac.1&)] =easlc(€). [Hap 1(§)]=0,
[Ha, 1E)] = —1aE), [Ha 1p&)]=enpl (&),
[Ha, 1] =0. &eq. (37a-i)

It is straightforward to verify that the above commutation relations fulfil the graded anti-
symmetry and Jacobi identities.

The component8a, ha . ha,i(£), i 4(E),1(§), & € g satisfy relations (35)—(37) and
thus are the generators oZagraded Lie algebra isomorphic toThus,t could be defined
alternatively in this latter way. The definition given above has the advantage of showing
thatt is indeed aV = 2 Lie superalgebra.

To make contact with Ref. [31], one sets

tne=hap+hpa k=eVChgr, ua=ha dix=—ha, (38a—d)
JO=i®), jaE) =ia®, (&) =i®), &egq. (39a—c)
From (35)—(37), one sees thak, k, ua, dy4, j, ja andl satisfy the relations

[tac, 1BD] = €aBfcD + €cBfAD + €aptBC + €cptBA, [k, 1AB] =0, [k, k] =0,

(40a—c)
[tac, up] = enuc +ecaua, [k, ua]l = —ua,
[tac. dB] = eapdc +ecrda, [k, da] = da,
[tre, j ()] =0, [k, j(E)] =—-2j(&),
[tac. jB(E)] = ensjc () +ecrja(§), [k, jaE)] = —ja(6),
[taB, 1(§)] =0, [k, 1(6)] =0, ¢&eg, (41a-j)
[ua.up] =0, [da,up) = 3(tas+ €ak). [da.dp] =0, (42a—c)

[ua, j&)] =0, [ua, jp)]=e€asj®),

[ua, 1(E)] =0, [da,j)]=ja®),

[da, jB(§)] = —ensl(§), [da,l()] =0, £ ey, (43a—)
[i&).iml=0, [jE&),jam]=0,

&), im] =jd& nD, [ja®), je(n] = ensj (&, D),

[ja@®),lm] = ja(&, 0D, [E. 1] =& 1D, & neg. (44a—f)

Note that, from (40):as, k generate an ungraded Lie subalgebra
i~sl(2R)®R (45)

of t. iis called the internal symmetry algebra of tNe= 2 fundamental superstructure
and plays an important role.
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4. The Weil algebra

In this section, we shall introduce the = 1 andN = 2 Weil algebras. As we did in the
case of the fundamental = 1 andN = 2 superstructures, we shall not attempt a derivation
from a simpler, more basic set of axioms. Again, their justification lies ultimately in the
applications they have in differential geometry and in topological quantum field theory.

Let g be an ungraded Lie algebra.

4.1. TheN = 1case

Definition 5. The N = 1 Weil algebraw of g is the N = 1 left supermodule algebra
with unity of the N = 1 fundamental superstructuref g (cf. Section 3.1) defined by the
following properties:

1. wis derivative;

2. wis generated by, W (1), u € g¥, whereW : g¥ — wlis a linear map;

3. the following relations hold:

HW=W, HW =2W,

HW =—-W, HW =0, (46a—d)
IEOW=E 1EW=—[E W],

[ew=—[gw], I&W=-[W], ¢&eg, (47a~d)

whereW is viewed as an element of @ g.
It is straightforward to verify that the above relations do indeed defiiggeaded module

of t.

Note that the components i, % and the component derivatiohsh, i (£),1(£), £ € g,
satisfy relations (46) and (47). Henceul, w generate a derivativié graded left module
algebra with unity isomorphic t&. Thus,w could be defined alternatively in this latter way.
The definition given above shows thvais indeed anv = 1t left Lie module superalgebra.

In the standard treatment, is usually presented as follows. Define

w=w, ¢=1i+ 3w w. (48a,b)
Then, one has

ko =, ko =29, (49a,b)

do=¢ - 3[w, 0], dp=—[w.4]. (50a,b)

J@w=¢, j&)¢=0, IE)o=—-[5 0], 1E)¢=-[§¢], g (51lab)

wherek, d, j, [ are given by (27) and (28). Note thatis just another name fap. ¢ is by
construction ‘horizontal’, i.e. satisfying (51b).
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4.2. TheN = 2 case

Definition 6. The N = 2 Weil algebraw of g is the N = 2 left supermodule algebra
with unity of the N = 2 fundamental superstructuref g (cf. Section 3.2) defined by the
following properties:

1. wis derivative;

2. wis generated by, W, (1), A = 1,2, u € g¥, whereWy : g¥ — wl is a linear map;
3. the following relations hold:

HsWp =0, HaWpc = —eacWa,

HaWp = —Wa g — Wpa, HacWp=—eacWa,

Hp,cWg.p =eceWa,p —eocWp,a, HacWp = —eacWa — eacWs,
HoWp = —Wpa, HaWpc=eacWp, HaWp=0, (52a—i)
1E)Wa =0, 1(§)Wa = enst,

1(E)Wa = —[6, Wal,  La(E)Wp = engé,

LaE)Wp,c = —eacls, Wpl, 1AW = —[€, Wp al,

[EWa =—[5,Wal, 1EWap=—[5 Wasl,

[©Wa=—[6Wa], &eq (53a-i)

whereW, is viewed as an element of ® g.

Itis straightforward to verify that the above relations do indeed defiigraded module
of t.

Note that the components &4, wa g, w4 and the component derivations, h4 g,
ha,i(€),iA(5),0(8),& € g, satisfy relations (52) and (53). Henceuds, w4 g, W4 gen-
erate a derivativé graded left module algebra with unity isomorphic te. Thus,w could
be defined alternatively in this latter way. The definition given above showstisahdeed
aN = 2t left Lie module superalgebra.

To make contact with Ref. [31], we shall presanas follows. Define

wA = Wa, ¢aB = 3(wa.p +wp 4+ [wa, wp),
Yy = —%GKLwK,L, pA = —%@A - %GKL[U)K, wa,L] — %EKL[wK, [wr, wal].

(54a~d)

Then, one has

IACwB = €ABWC + €CBWA, kws = w4,
tACPBD = €ABPCD + €CBPAD + €ADPBC + €cDPBA, kAR = 2PaB,
tagy =0, ky =2y,

IACPB = €ABPC + €CBPA, kpa = 3p4, (55a-hH



310 R. Zucchini/ Journal of Geometry and Physics 35 (2000) 299-332

Uawg =0, uapsc =0,
Ay = —o4, UAPB = PAB,
dawp = _%[wA, wp] + a8 — €Ay, dagec = —[wa. ¢ac] + eappc
day = —3loa, ¥]+ pa +€acrs,
+ 36" ok, dLa— glor, oall,  daps = ~[wa, ps]

— 3" ¢Ka, dLal.

(56a—h)
Jj(E)wa =0, J(E)pr =0,
iy =§, J(&)pa =0,
ja§)wp = €agt, ja@)¢sc =0,

ja®)y = —3[6, wal, jaE)pp =0,

l&)wa = —[§, wal,  1(E)pa = —[&, dnsl.
&y =-I[&. v, 1(&)pa = —[&, pal, tEeg, (57a-)

wherers g, k,ua,da, j, ja, ! are given by (38) and (39). Note thaj is just another name
for ws. y contains the information aboutywp not exhausted byag. By construction
¢ag andp,4 are ‘horizontal’, i.e. satisfy (57b,d,f,h).

5. Superoperations and their conomologies

Let g be an ungraded Lie algebra.

5.1. N = 1 superoperations and their cohomologies

Definition 7. ais called anN = 1g superoperation if:

1. ais aZ graded left module algebra of the fundamenYal= 1 superstructure of g
(cf. Section 3.1);

2. the action of ona is derivative;

3. ais completely reducible under the internal symmetry algebfa(cf. Section 3.1), the
spectrum of the invariari of i is integer and the eigenspaa® of k of the eigenvalue
p € Zis precisely the degrege subspace 4.

So,a is acted upon by four graded derivationg, i (£),1(£), & € g, of degree 0+1,
—1, 0, respectively, satisfying relations (24)—(26), or, equivalently, by four graded deriva-
tions k,d, j(&), 1(§),§ € g, of degree 0+1, —1, 0, respectively, satisfying relations
(29)—(33), the two sets of derivations being related as in (27) and (28).

Proposition 1. Ifa®, » = 1, 2,are twoN = 1g superoperations, then their graded tensor
producta = a®®a@ is also anN = 1g superoperation.

Proof. Indeeda satisfies the conditions stated in Definition 7. O
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Leta be anN = 1g superoperation.
The pair(a, d) is an ordinary differential complex, as the graded derivafitias degree
+1andl, d] = 0. Its cohomologyH *(a), defined in the usual way by

HP(a) = (kerd NaP)/da’~t, peZ, (58)
is the ordinary cohomology of the superoperation. Define

apasic= [ |Kerj(€) Nkerl(§). (59)
seg

By (32), apasicis d invariant. So(apasic d) is also a differential complex. Its cohomology
Hgasic(a)

HP (a) = (kerd nal. )/dal pel, (60)

basic

is the basic cohomology of the superoperation.

Proposition 2. Each nonzero (basic) cohomology class of degrelefines a one-dimensi-
onal representation of the internal Lie algehraf invariant p.

Proof. Setk[x] = [kX] = p[x] for [x] € HP(a)([x] € Hg’asic(a)) with arbitrary represen-
tativex € a”(x € af)- O

Though the above proposition is trivial, it is nevertheless interesting because of its non-
trivial generalization to higheN.

5.2. N = 2 superoperations and their cohomologies

Definition 8. ais called anV = 2g superoperation if:

1. ais aZ graded left module algebra of the fundamenYak= 2 superstructuré of g
(cf. Section 3.2);

2. the action of ona is derivative;

3. ais completely reducible under the internal symmetry algéebfa(cf. Section 3.2), the
spectrum of the invariari of i is integer and the eigenspaa® of k of the eigenvalue
p € Zis precisely the degree subspace o4.

So,a is acted upon by six graded derivatiolg, ha g, ha,i(€),i.4(E),i(£),€ € g,
of degree—1, 0, +1, —2, —1, 0, respectively, satisfying relations (35)—(37), or, equiva-
lently, by seven graded derivatiomgs, k, ua, da, j(§), ja(§),1(§),€ € g, of degree
0,0, -1, +1, —2,—1, 0, respectively, satisfying relations (40)—(44), the two sets of deriva-
tions being related as in (38) and (39).

Besides, i possesses another invariant, namely

1 _KL_MN
—§€ €

c = TKMILN- (61)
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An irreducible representation afis completely characterized up to equivalence by the
values ofc andk, which we parametrize $n2 — 1) andp, respectively, where € N and

p € Z.n is nothing but the dimension of the representation. Being completely reducible
underi, a organizes into irreducible representations. &fe denote by ? the eigenspace

of ¢, k of eigenvalue%(n2 — 1), p, respectively. It follows thaa has a finer grading than
the original one.

Proposition 3. Ifa®, r = 1, 2,are twoN = 2 g superoperations, then their graded tensor
producta = a®®a@ is also anN = 2g superoperation.

Proof. Indeeda satisfies the conditions stated in Definition 8. O

Leta be anN = 2g superoperation.

The graded derivation$, have degree-1 and satisfyd4, dg] = 0. So, one may define
a double differential completa, d4). We do not define cohomology in the usual way, as
the standard definition would not be covariant with respedt bostead, we propose the
following definition generalizing that of Ref. [31]. The ordinary cohomolddy(a) is
labelled by the values of the invariantsk of i and is defined as

H"P (@) = (Na=12kerdy Na™?) /3 dgd amr=2, (n,p) eNxZ. (62)
The basic subspace afis defined as
apasic= [ |Kerj (&) N Na—12Kker ja(€) Nkerl(s). (63)
§eg

Using (43d-f), one can show thaggsicis d4 invariant. So,(apasic d4) is also a double
differential complex. Its cohomologsf;. () is defined

, ,p—2
Hy:l(@) = (Nazyokerds Nap k) /3edkdragl = (n,p) e Nx Z, (64)

wherea’gg;cz a™P N apasic and is the basic cohomology of the superoperation.
The (basic) cohomology of anyy = 2 superoperatiom is structurally restricted, as
indicated by the following.

Proposition 4. One has

H"P@) =0, for p#+n+1. (65)
Similarly,
Hy k(@) =0, for p#£+n+1 (66)

Proof. Itis convenient for the time being to revert to the original basish s c, hp of t,
which allows for a more compact notation. Let a such thati4x = 0. Using (35b,c), it
is easy to show that

[ha +€Vhghy Alx —ha3eChgh x = 0. (67)
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Apply now 4 3 to the left-hand side of this equation and contract wftf. After a short
calculation exploiting (35c¢,e), one gets

[—%GKLEMN/’!K’M]’IL,N + %GKLhK,L]x — %EKLEKEL%EMNthNx =0. (68)

Using the relatioth 4 g = %(IAB — eagk), following from (38a,b) and (61) in (68), one gets
finally

[e+ 21— (k — DA]x — 3e¥did; LeMNuyuyx = 0. (69)
If x € &™7, (69) yields
%1[;12 —(p—1%x — %GKLdeL%eMNuMuNx =0. (70)

(70) yields (65) immediately. (66) follows also from (70) upon checking that ferapasic
$eMNpyhyx € apasicas well, by (37a—c). O

Proposition 5. The nontrivial elements ¢gf":” (a) (Hgégic(a)) fillirreducible representa-
tions of the internal symmetry algebiraf invariantsn, p.

Proof. By (41c,d), if x € a™” N Na=12Kkerda, thentapx, kx € a™? N Na=12kerdy

as well. Further, ift € 3e¥tdxd a™P=2, tapx, kx € 1eKtdgd a™P~2, also. One thus
definesap[x] = [rapx] andk[x] = [kX, forany [x] € H™ P (a) with arbitrary representative

x € a»PNNa=12Kkerdy4. Thisyields the first part of the proposition. The statement extends

to basic cohomology, by noting thafzx, kx € aj.2. whenever € a”. . by (41e—j).0

Recall that the only irreducible dimensional module af = s((2, R) & R is the com-
pletely symmetric tensor spat;;?“’l R2 up to equivalence. Hence, one has a tensor factor-
ization of the form

n—1
H"P(@) = K" @ \/ R?, (71)
n—1
Hpauid® = Kot ® \/ R, (72)

: np ghp
for certain vector spaces™”, Ky .

6. The Weil superoperation and its cohomologies
Let g be an ungraded Lie algebra.
6.1. TheN = 1case

Letw be theN = 1 Weil algebra ofg (cf. Section 4.1). Theny is anN = 1g super-
operation (cf. Definition 7) calledy = 1 Weil superoperation. Indeed, as shown in Section
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4.1,w is aZ graded left module algebra of the fundamem¥ak= 1 superstructuréof g,
the action ot onw is derivative andv is obviously completely reducible under the internal
symmetry algebrawith k acting as the degree operatovoby (49a,b).

Theorem 1. H?(w) = Ofor p # Oand
How) ~ R. (73)

Similarly, HY . (w) = 0,for p # 2s withs > 0,and

HE g dw) =~ (\/ gv) , $>0, (74)
al

d'g

where(\/* g¥)aq4 denotes the subspace of symmetrized tensor progugt’ spanned by
the elements which are invariant under the coadjoint actiog. of

Proof. Below, we shall use the following notation. Let A" g¥ ® \/*g". Let§ € g,

n € g, wherellg is the Grassmann odd partnergfWe denote by (¢, n) the evaluation
of r on Zp,qzos®p ® n®4. Every element, € w is of the formz = r(w, w) for some
re A"g¥" ®\"g¥ uniquely determined by. As degw = 1,degw = 2, w? = 0 for
p < 0andw® = R1. Hence,H?(w) = 0 for p < 0 and Ho(w) ~ R, trivially. Let
wr>0 — B p-oW?. wP>0 s acted upon by the graded derivatign& and two more graded
derivations*, i* of degree—1, 0, respectively, defined by

i*w=0, i*w=w, Pw=w, "D =w. (75a—d)

Identify i*, i* with the linear maps*(x) = xi*, i*(x) = xi*,x € R. Then,h, h, i*,i*
satisfy relations (24)—(26) with = R. It follows thatw”>C is anN = 1R superoperation.
Switch now to the derivationis, d, j*, I* defined by (27) and (28). By (32a)* is a homo-
topy operator foel, for I* commutes withj* andd, by (32b) and (33b), antf is invertible
onw?>9 by (75c,d) and the definition af”>9. Thus, the cohomology af is trivial on
w?>9. This proves the first part of the theorem. Every elenenst wpasic is of the form
z = r(¢) for somer € (\/* gV)advg uniguely determined by. Indeedz = r(w, ¢) for a
uniquer € A*g¥ ® \/* gV, by an argument similar to that employed earlier, and, by (51),
the basicity conditiong (§)r(w, ¢) = 0, 1(&)r(w, ¢) = 0 imply thatr has polynomial
degree 0 in the first argument and is’gdnvariant. It follows thatvvgasic= 0 for p # 2s
with s > 0, as degp = 2. So, H} (W) = O for p # 25 with s > 0. Lets > 0. If
z=r(p)withr € (\/* g")aq g, thend = 0, by (50b) and the ady invariance of-. Hence,
Wl N kerd = wZ ;. We thus have a linear injectign: w5, .nkerd — (\/* g¥)a0

basic
givenbyz > r.As,w2 -1 = 0, uinduces alinear bijectiop : Hﬁ;sic(w) = (V' 8V)ad'g-

basic
[l

6.2. TheN = 2 case

Letw be theN = 2 Weil algebra ofg (cf. Section 4.2). Theny is anN = 2g super-
operation (cf. Definition 8) calledd = 2 Weil superoperation. Indeed, as shown in Section
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4.2,w is aZ graded left module algebra of the fundamen¥ak= 2 superstructuréeof g,
the action ot onw is derivative andv is obviously completely reducible under the internal
symmetry algebrawith k acting as the degree operatovoby (55).

Theorem 2. H"?(w) = 0, for (n, p) # (1, 0), and
HYOw) ~ R. (76)
Similarly, H,:2 (w) = 0, for (n, p) # (1,0), (25, 25 + 1) with s > 0,and

asic
s 2s—1
HE2 w) =R,  HEZhw) ~ (\/ gV) ® \/ R% s5>0. (77)
ad’g

Proof. Below, we shall use the following notation. Lee A*(g¥ ® ®’R?) ® \/*(g¥ ®
®"R?). Let& e Mg ® ®@“R?Y, n € g®"R?". We denote by (£, n) the evaluation of on

> 5.4>08%7 ® n®4. The above notation can be straightforwardly generalized to the case
where there are sevetghndy. Every element € wis ofthe formz = r(w, w_, w) forsome

re N (@' oR?)®\/*(g"®8°R%)® A*(g¥ ®R?) uniquely determined by. As degw, =
1,degwy p = 2,degws = 3, w™? =0, forp <0, andw™9 = Ré,.11. So,H™P(w) = 0,

for p < 0, andH"O(w) =~ §, 1R, trivially. Let wP>0 = @,y ,-oWw™”. wP>0 is acted
upon by the graded derivations, i 4_ g, h 4 and three more graded derivatians 4, i of
degree-2, —1, 0, respectively, defined by

i*wyq =0, i*wA,BZO, i*Wa = wy,
iywp =0, iYwpc=—€cawp, I,Wp=Wpa,
I*wp = wy, i*wA,BzwA,B, I*Wa = Wy. (783.—;)

Identify i*, i*,, i* with the linear maps* (x) = xi*, i* (x) = Xi*, i*(x) = xi*, x €
R. Then,ha, ha g, ha.i,i 4,1 satisfy relations (35)—(37) with = R. From this fact, it
is easy to see that?>0 is an N = 2R superoperation. Switch now to the derivations
ta,B, k,ua,da, j*, ji,1* defined by (38) and (39). By (43ej; is a homotopy operator
for d4, for I* commutes withjy andd,, by (43f) and (44e), antt is invertible onw?>0,
by (78g—i) and the definition af?>0. Indeed, using (43e,f) and (44e), one can show that

[3€Cdkdp, 3¢ jx jx] = —1* (" + <Cjrdy). (79)

where, by (41g,h)3eMN ¥ jx mapsw”? intow” ?~2. Thus, the cohomology af; is trivial
onw?>9_ This proves the first part of the theorem. Let us examine next the second part. As
w"P =0, forp < 0,andw™0 = Ré,.11, as shown earlier, and 1 is obviously ba\ﬁj’{;’a’;icz
0,forp <0, anng:;;icz R$,,11. Consequentlyd, 2 (w) = Oforp < 0. anng’égic(w) ~
8»,1R. On the other hand, by Proposition 4, Eq. (68);2 (w) = 0 for p # +n + 1. So,
the only potentially nonvanishing cohomology spaces which are left, -ng(w), n>1,
which we shall analyze next. Every element wypgsicis of the formz = r(¢, p) for
somer € (\/*(@” ® V2R @ A\*(g¥ ® R?)),q 4 Uniquely determined by. Indeed; =

r(w, v, ¢, p), foraunique € A*(g" @R)H®\/* " @\ (5" @V’ RHD N\ (g ®R?),
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by an argument similar to that employed earlier in the proof, and, by (57), the basicity
conditionsj (§)r(w, y, ¢, p) = 0, jaE)r(w, v, ¢, p) = 0,1(&)r(w,y, ¢, p) = 0imply
thatr has polynomial degree 0 in the first two arguments and gsimdhriant. Letz =
r(p, p) € Wg;g;l. From (55c,d,g,h) and the representation theory=e%1(2, R) @ R, one
knows that the total number of internal indicas= 1, 2 and the total degree carried by
éaB, p4 INn each monomial of (¢, p) must ben — 1+ 2v andn + 1, respectively, where
2v is the number of indices contracted by means/st. Further, the: — 1 uncontracted
indices are totally symmetrized. So, the numbeys m, of occurrences opag, p4 in a
given monomial must satisfy the equatioms2+ 1m, = n —1+2v, 2my+3m, =n+1.
Taking into account thatig, m, are nonnegative integers, one finds that 0, my =
s—=Lm,=1"forn =2swiths > 1,andv = 1,my = s,m, =0, forn = 25 — 1 with

s > 2. Thus, the most generale ng’sfgl is of the form
2= ut AN Gu A A, g gs PAg 1)y N =25, s> 1, (80)
z= %EKLUAl”'Az"Z((bAlAS_l, e DA pAr s PAs K PAn L), RN=25—1, s§>2,
(81)
whereyAt-Az-1 ¢ (\/$71 g" ®g")aqg totally symmetricindy, ..., Az1, pAL-Az-2 ¢
(V' "2 8Y®/\? g¥)aq totally symmetricimy, ... , Az—2. Suppose nowthate wias-n

Na=12kerdy so thatz, besides being of the form (80) and (81), satisfigs = 0. Suppose
first thatn = 2s. Using (80) and (56f,h), the symmetry properties and theiadariance

of uA142-1 and taking into account that terms with a different number of occurrences of
oaB, p4 are linearly independent, the conditidpz = 0 is equivalent to the equations

GAAx,luAl...A257l(¢A1A“ ceey ¢AS,2A25,37 PAy 25 ;OAZS,]_) =0, (82)
%GKLMAl"'AZ“l(fﬁAlAS, e DA 1 Ap_ s [PKAs_1s PLAD = 0. (83)
As p, is odd anduA142-1 is totally symmetric inAyg, ..., Ax_1, (82) entails that

uAr-42-1 is totally symmetric in itss arguments. Using this fact and the géhvari-
ance ofy4142-1 it is easy to see that (83) is identically satisfied. Hemc®; 42-1 ¢
V° gv)advg. Conversely, if this holds, then (82) and (83) are fulfilled. The above anal-

ysis shows thawtz)g’sziffl N Na=12kerdy is precisely the space of theof the form (80)
with yA1-42-1 ¢ (\/* 9")ad'q totally symmetric inAy, ... , Az,_1. Thus, we have a lin-
ear bijectionu : w22+ N ny_qokerdy > (\V/° 0 )ad’g ® \/*~1R? defined byz —

basic
(At A2-1) 4 4, 1—12. We note next thawg‘;’;“c_l = 0. Indeed, ifz = r(¢, p) €

wﬁ’a"si_cl, the total number of internal indice$ = 1,2 and the total degree carried by
oaB, p4 INn each monomial of (¢, p) must ben — 1+ 2v andn — 1, respectively, where
2v is the number of indices contracted by meanse®t. So, the numbers:y, m, of
occurrences opap, p4 in a given monomial must satisfy the equationgg2+ 1m, =

n—1+2v,2my + 3m, = n — 1. Taking into account that, m, are nonnegative in-

tegers, one finds that there are no solutionsufee 2s with s > 0, so thalwggs"}f:_l =
0 as announced. Thus, the bijectipnabove induces a bijectiofi : Hgg'jé“(w) >
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(\V* 8")ag’g ® VZ ' RZ Suppose next that = 25 — 1. Using (81) and (56f,h), the
(anti)symmetry properties and thegaithvariance ofv4142-2, the conditiond,z = 0 is
equivalent to the equation

(s — Z)GKLEAAx—szlmAZkZ(¢A1Ax—1a s DA 3An 5y PAs_a> PAgy 3K DAy oL)
+UA1MA2Y72 (¢A1AS,17 e ¢AS,2A2Y,4s PAs_3» ¢A25,2A)
+6KL€AA2Y_3UAl”.AZY?Z((pAlAS_la cee s ¢AS_2A25_49 PK » ¢A25_2L) =0. (84)

Now, applyu to this relation, using (56b,d), and then contract wif. One gets then
%GKLvAl"'A2v—2(¢A1AS_1’ e ¢As—2A25—4¢A2i—3K¢A2r—2L) = 0. So,z = 0. We conclude
thatwﬁ‘;;ii’zs NNa=12kerds = 0. Thus,HbZ;;CLZ‘ (w) = 0 as well. O

6.3. The relation between the cohomologies ofihe 1andN = 2 Weil superoperations
Letw(n) denote theV = n Weil superoperationg, = 1, 2.

Corollary 1. One has

n—1
Hn,:tn+l(w(2)) ~ H:t()l—l/2)+1/2(w(l)) ® \/ Rz, (85)
+(n—1/2)+1/2 -
Higan ™t w(2) =~ H 8 Y2 2w @ \/ R2. (86)
Proof. Combine Theorems 1 and 2. O

Thus, theN = 1 andN = 2 cohomologies oiv are intimately related.

7. Connections, equivariant cohomology and Weil homomorphism
Let g be an ungraded Lie algebra.

7.1. TheN = 1case
Leta be anN = 1g superoperation with unity, i.@ as an algebra has a unity 1.

Definition 9. A connectiona on a is an element o& ® g satisfying relations (49a) and
(51a,c) withw substituted by:.

The curvature of: is defined as usual as

f =da+ 3[a,a]. (87)
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It is easy to see thaf satisfies relations (49b) and (51b,d) withsubstituted byf. In
particular, beingi (¢) f = 0 for any¢ € g, f is horizontala, f together fulfil (50).

We denote by Cona) the set of the connections of thé = 1g superoperatiora.
Conn(a) is an affine space modelled ah ® g.

Proposition 6. Letr € A*g¥ ® \/*g" be such that, for any connectiene Conn(a),
r(a, f)is arepresentative of some eIemenbg"gsic(a) (see above E75)for the definition
of the notation). Then, the basic cohomology class, f)] is independent from the choice
ofa.

Proof. We follow the methods of Ref. [32]. Consider tNe= 1 superoperatioagenerated
by s, 5 of degree 0+1, respectively, with

Ws=0, W5=3
s =5, =0 (88a-d)

i*(6)=0, i*(6)=0, feg. (89a,b)

Next, we consider the graded tensor product superopersfi@nand the subalgebraof
s®a generated by the elements of the fart), 2*a(s), a(s), h*a(s), wherea : R — a®g
is a polynomial such that, for fixedl € R, a(o) is a connection oa andd(c) = —ha(o).
Next, we define a degree 0 derivatigron c by

ga(s) =0,  qa(s) = —h*a(s),

ghta(s) =0, gh*a(s) =0. (90a—d)

Note that, for fixeds € R, a(0), a(o) satisfy relations (46) and (47) witt, w replaced
by a(o), a(o). Using this fact, one easily checks that

[q.h] =h*, [q.h°] =0, (91a,b)
l[g.h+h'] =0, (92)
[q.i(6)] =0, [q.i€)]=0  &eg. (93a,b)

Letr € A*g¥ ® \/" g" be such that, for any connectiaron a, r[a] := r(a, @) belongs
to apasicN kerh. By (91a) and the fact that-[a] = O,

h*rla(s)] = —hara(s)]. (94)

We note that, by (88c,d) and (90a,lm)y[a(s)] is necessarily of the formgr[a(s)] =
Sa(s|a), wherea(sla) is a polynomial ins. From this expression and (88a,b), it follows
thati*qra(s)] = qr[a(s)]. By (92), one has then

hara(s)] = g(h — Drla(s)]. (95)
Further, from (93) and the fact thag)r[a] = 0, i(€)r[a] = 0,
i©ala©] =0, i&arfa]=0, Eeg (96a,b)
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For any element of s®a of the formx = S« (s) with «(s) a polynomial ins, we define
f[O,l]x = fola(o)da, where the right-hand side is an ordinary Riemann integral. It is

obvious that, for any element gf(s) of s®a polynomial ins, /* f (s) is of the above form
and —f[o’llﬁxf(s) = f(1) — f(0). From (94), one has thus

rla(W)] - rla(0)] = F /[O At (97)

By (27b), the right-hand side of (97) belongsda. From (27a), (95) and (96), if[a]
belongs toa’b’asicfor any connectiom ona, thengr[a(o)] belongs toaﬁ;s}cfor o € R, so

that fi, 4;arla(s)] belongs toag;;c too. O

Consider theV = 1 Weil g superoperatiomw (cf. Section 6.1). Thew is a connection
onw with curvaturep (cf. Eq. (48)).

Given anN = 1g superoperatioa with unity, one can define the graded tensor product
N = 1g superoperationv®a (cf. Section 5.1). The latter is the equivariait= 1 su-
peroperation associated & The equivariant cohomology @f is, by definition the basic
cohomology ofv®a:

Hyyi(® = Hppgwda),  p el (98)

An equivariant cohomology class efis represented by elementsw&a of the form
r(w, ¢), wherer € A\*g¥ ® \/*g” ® a. The Weil generatow constitutes a connection
of w®a. If a is a connection of, a is a connection ofv®a as well. By Proposition 6,
r(w, ¢) is equivalent to-(a, f) in equivariant cohomology. On the other hand, f) is
a representative of a basic cohomology class,afhich, by Proposition 6, is independent
from a in basic cohomology. Thus, there is a natural homomorphisrﬂgta[“v(a) into

HY (@), calledN = 1 Weil homomorphism.

7.2. TheN = 2 case
Leta be anN = 2g superoperation with unity.

Definition 10. A connection(as)a=1,2, ona is a doublet ofa ® g satisfying relations
(55a,b), (56a), (57a,e,i) with4 substituted by 4.

The derived connection
b= 3edgay (99)
and the curvature and derived curvature

fag = 3(daap +dgaa +[aa, ag)).
ga = —3eVdxdras — 3" ag ., draa] — 1" ak. [ar, aall (100a,b)
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satisfy relations (55c—h) and (57b—d,f-h,j-l) with¢ag, p4 substituted byb, fas, g4,
respectively. In particular, beingé) fag = 0, ja(§) fec = 0, j(§)ga =0, ja(§)gp =0
foranyé& € g, faB, g4 are horizontalaa, b, fa, g4 together satisfy (56b—h).

We denote by Conia) the set of connections of thé = 2 superoperatioa. Conn(a)
is an affine space modelled aA! ® g.

Proposition 7. Letr € A*(g¥ @ R) ® \/*g¥ ® V*(g" ® V2R?) ® \*(g” ® R?) be
such that, for any connectiofus)a=12 € Conn@a), r(a, b, f, g) is a representative of
some element df ;% (a) (see abovéq. (78)for the definition of the notation). Then, the
basic cohomology clags(a, b, f, )] is independent from the choice @f4) s=1 2.

Proof. We generalize the methods of Ref. [32]. Consider the= 2 superoperatiors
generated by, s 4, 5§ of degree 0+1, 42, respectively, with

h%s =0, h%s g =0,

h%5 = —s A, hi‘,Bs =0,

Wy.c8.8 = —€BcS,a, h) 5 = —€ngs,

@is = —5.4, h%s B = €S,

k%5 =0, (101a-)
i'(6)=0, i*®& =0, i"¢)=0, £eag. (102a—)

Next, we consider the graded tensor product superoperag@nand the subalgebra
of s®a generated by the elements of the foem(s), h%ap(s), i h%ac(s), aa p(s),
hag c(s), iy gac p(s), aals), hyag(s), iy hyac(s), whereas 1 R — a®g, A = 1,2,
is a polynomial such that, for fixed € R, as(o) is a connection o anday p(o) =
—hpaa(o),da(0) = 3¢ hxhiaa(o). Next, we define a degree O derivatipron ¢ by

gaa(s) =0, qan.5(s) = —hyaa(s),

qaa(s) = —eKthian L(s), qhap(s) =0,

qhag.c(s) = eacye il ag(s), qhdag(s) = 3e<"hh}ap a(s),

q%eKLflstlSLaA(s) =0, q%eKLflSKﬁsLaA,B(s) =0,

qief i aa(s) = 0. (103a-)

Note that, for fixed € R, a(o), as(0), a(o) satisfy relations (52) and (53) with, w4,
replaced byi(o), as (o), a(o). Using this fact, one easily checks that

[q.hal =, [q.h%]=0, (104a,b)
lq.ha B +hy gl =0, (105)
[q.i®]=0, [q.ia(&)]=0, [q.i(&)]=0, £Eeg. (106a—c)

Using (104a), it is easy to show that

lq. 3¢V hkhi] = €“hiche,  3lg.1g, 3¢ hxhi]] = 3 iy . (107a,b)
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Letr e A"(@¥ @R ® \/*(g¥ ® ®°R?) ® A*(g¥ ® R?) be such that, for any connection
as, A=12,0na,rlal :=r(a,a,a)belongs t@pasicN OA:szerﬁA. Using (107) and
the fact thatior[a] = 0, it is easy to see that

$et i iy rla(s)] = 3€“Yhkh 3qrla(s)]. (108)

We note that, by (101g—i) and (103a-$);%r[a(s)] is necessarily of the forgg2r[a(s)] =
Sa(sla) + 3€Kts ks 1 B(sla), wherea(s|a), B(s|a) are polynomials in. From this expres-
sion and (101d—f), it follows thalt', ,3¢?r[a(s)] = —eap3q?r[a(s)]. By (105), one has

then

hap3q%r[a()] = 3¢2(ha.B + eap)ra(s)]. (109)

Further, from (106) and the fact tha€)r[a] = 0,i 4(§)r[a] = 0, i(&)r[a] =0,

i(6)3¢%[a()] =0, ia® 3¢’ [a(=)] =0, i(©)3¢°la=)] =0, £egy.
(110a—c)

For any element of s®a of the formx = §a(s) + 3eKbs ks B(s) with a(s), B(s)
polynomials ins, we defineflo,l]x = fola(o) do, where the right-hand side is an ordinary
Riemann integral. It is not difficult to show that, for any elemenf @) of s®a polynomial
ins, 3eXLis Y £ (s) is of the above form ang%oﬁl]%e'('-fr}(ﬁif(s) = f(1) — £(0). From
(108),

Aa(D]  rla©)] = 5Ky f 2l (111)
[0,1]

By (38d), the right-hand side of (111) belongs3eK'dxd; a. From (38a,b), (109) and
(110),2 if r[a] belongs toaﬁg;ic for any connectiorz4 on a, then %qzr[a (0)] belongs to
n,p—

apiae foro e R, so thatf[o‘l]%qzr[a(s)] belongs toaﬁ;fé;z, too. O

Consider thev = 2 Weil g superoperatiom (cf. Section 6.2). Theny, is a connection
of w with derived connectior and curvature and derived curvatdigs, pa (cf. Eq. (54)).

Given anN = 2g superoperatiom, one can define the graded tensor prodvict 2 g
superoperatiow®a (cf. Section 5.2). The latter is the equivariavit= 2 superoperation
associated ta. The equivariant cohnomology afis by definition the basic cohomology of
w®a:

Hogin®) = Hpsb(w&a), (1, p) e Nx Z. (112)

An equivariant cohomology class afis represented by elementsw&a of the form
r(w,y. ¢, p), wherer ¢ A*(g¥ @R ®@\V/*g" @V (@' @ V2 R) @ A\*(g" 9R) ®@a.
The Weil generatom, constitutes a connection af®@a. If a, is a connection of, a4 is
a connection oiv®a as well. By Proposition 7;(w, y, ¢, p) is equivalent to-(a, b, f, g)
in equivariant cohomology. On the other handy, b, f, g) is a representative of a basic
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cohomology class d, which, by Proposition 7, is independent fram in basic cohomol-
ogy. Thus, there is a natural homomorphiané’Eﬁiv(a) into H,;L (@), calledN = 2 Weil
homomorphism.

8. Superoperations of a smooth manifold with a group action

Let M be a smoothn dimensional manifold. Thusy is endowed with a collection of
smooth chartsU,, x,), a € A, inthe usual way. LeM carry the right action of a Lie group
G with Lie algebrag (see Ref. [33] for an exhaustive treatment of the theory of manifolds
with a group action).

Lets be a Grassmann algebra such tfat- R.
8.1. N = 1 differential geometry
Definition 11. An N = 1 differential structure o/ is a collection{(U,, X,)|a € A},
where
1. {U,|a € A} is an open covering a¥/;

2. foreachu € A, X, : U, — (Sg)’” andx, = X,lg—o0 : U, — R™ is a coordinate oM
3. fora, b € A such that/, N Up # B, X4 = x4 0 x; *(Xp).

Below, we shall omit the chart indices b, ... except when dealing with matching
relations.
We write as usual

X =x'+0x, X =%, (113a,b)

wherex’ : U > R, % : U > st
We introduce theV = 1 covariant superderivatives

Di = dxi + 0dyi, D; = oy, (114a,b)

wheredy; = 9/9%'. One has relations

[D;,D;]1 =0, [D;,D;]=0, [D;,D]=0. (115a—)
Further,
pix/ =0, DX =¢/, Dix/=s, DX =o (116a—d)

Using (113), it is straightforward to check that relations (116) completely characterize
D;, D;.

The transformation properties &f under chart changes, stated in Definition 11, imply
that

Xi = X] DX’ (117)
Using that (116) completely characterize, D;, one can show easily that they match as

Dai = DaiX}Dyj, Dai = DaiXj Doj + Dai X}, D;. (118a,b)
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We denote byF the sheaf of germs of smootéi = 1 functions onM generated by
X', X'. By definition, a generic elemert e F(U) is a finite sum of the formF =
> p=0Biri, © XX ... X' for certain smooth maps;,...;, : R ~ R antisymmetric in
i1,...,ip. Itis easy to see that

m
F =Y [Fiyoiy + 005 Fipoi FOLE - 50, (119)
p=0

whereF;,..;, = ¢i,..i, o x. Hence,F is completely determined by = F|y—o.
F has a natural grading corresponding to the teteégree of’.
We define or, N U, # @,

Zabij = Dijé. (120)

It is easy to see thaf is a GL(m, F) 1-cocycle onM. Z is called the fundamental
1-cocycle of theN = 1 differential structure. One can introduce in standard fashion the
sheaf, ; = F(Z® ® zV®*) of germs of smoothv = 1 sections ofZ®" @ ZV®*. We
denote by, ; the vector space of sections&f ; on M.

z = Z|p—o is nothing but the tangent bundle 1-cocycleWfBy (113b), (117) and (119),

f?; can be identified with the space of smooth type tensor valued differentigh-forms
onM.

We are particularly interested in the spdgg, which is a graded algebra.

We define

H = X'D;, H=-X'D,. (121a,b)

Using (117) and (118), it is easy to see tiatH are globally defined derivations omo.
Denoting bycé the fundamental vector field oW induced by¢ € g, we define further

1(§) = CeD;, 1) =C'¢D; + X/D;C'¢D;, (122a,b)

whereC¢ is the element ofg”o corresponding ta¢ given explicitly by C'é = c'& +
0%/ dyjc'€. By (118a) and (120)] (¢), I(¢) are also globally defined derivations fap.
Using the relatioD; C/¢ = 0, it is now straightforward to verify thaf, H, I, I satisfy
relations (24)—(26). In this wafp o becomes & graded left module algebra of tiegraded
Lie algebrat (cf. Section 3.1).
Thus,f := fp o acquires the structure &f = 1g superoperation (cf. Definition 7), the
relevant graded derivations being

h=%08q h=—x"dy, (123a,b)
i(§) = c'Edxi, 1(E) = c'Edxq + T/ 3y Edxi. (124a,b)

This superoperation is canonically associated taXhe 1 differential structure.

Now, from (117) and (119), it appears that the graded alg@bisomorphic to the graded
algebra of ordinary differential forms aif. Under such an isomorphism, the derivations
k,d, j(&),1(&), defined in (27) and (28), correspond to the form degggethe de Rham
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differentialdyr, the contractiongr (&) and the Lie derivativir(¢), respectively. Therefore,
the above is nothing but a reformulation of the customary theory of differential forms, so that,
in particular, the (basic) cohomologyfas isomorphic to the (basic) de Rham cohomology.

Theorem 3. There is an isomorphism of thé = 1 (basic) cohomology dfthe de Rham
(basic) cohomology of th&) manifoldM . Indeed, one hasth&{ ? (f) = 0 (Hé’asic(f) =0),
except perhaps fdd < p < m, and

HP(f) ~ Hig(M), 0<p=<m, (125)
Hé)asic(f) = Hch basidM), 0=p=m. (126)
Proof. See the above remarks. O

Recall that a connection on theG spaceM is ag valued 1 form satisfying relations
(49a) and (51a,c) with, [, w substituted byjqyr, lgr, v, respectively [33]. We denote by
Conn(M) the affine space of the connections/n

Theorem 4. One has
Connf) >~ Conn(M) (125)

(cf. Definition9).

Proof. Any a € f' ® g is locally of the forma = a; %!, whereq; is ag valued smooth
map. Define.(a) = a;dgrx’. Then, by the above remarksz) is a connection oM if and
only if a is a connection of. The maph is obviously a bijection. O

8.2. N = 2 differential geometry

Definition 12. An N = 2 differential structure o/ is a collection{(U,, X,)|a € A},
where

1. {U,la € A} is an open covering a¥/;

2. foreachu e A, X, : U, — (sg)m andx, = X,l¢9—0 : U, — R™ is a coordinate oM
3. fora, b € A suchthat/, N Up # B, X4 = x4 0 x; *(Xp).

Below, we shall omit the chart indices b, ... except when dealing with matching
relations.
We write as usual

X' =x"+ 0%, + Je0F0tF, X', =i, +eakdfF, X' =3, (128a-c)
wherex’ : U > R,x') 1 U > st ¥ 1 U 2.
We introduce théV = 2 covariant superderivatives
D; = 3+ ek 0% 0y + Jex 050 0x,  Dia = eax(@ +050a). D = .
(129a—c)
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whered;;' = 8/dx’,, 3 = 8/9%". One has

[Di,Dj1=0, [Di,D;a]l=0, [D;, D;]=0,
[D,',A, Dj,B] = 0, [D,"A, ﬁ/] = 0, [[),', E/] =0. (130a—f)

Further,
DX/ =0, DX, =0, DX/ =68/, DX/ =0, DXy =enps/,

Di’Af(j =0, Dl‘Xj = Slj, DIX{A =0, [)if(j =0. (131a—|)
By (128), relations (131) completely characteri2g D; 4, D;.
The transformation properties &f under chart changes, stated in Definition 12, imply

that
X' a = Xpl aDpiXa', X4 = ij5ijai+%€JKij,Jka,KDbj[)kaai~ (132a,b)

Using that (131) completely characterig, D; 4, D;, one can show easily that they match
as

Dai = DaiXp? Dpj,  Dai.a = DaiXp’ aDpj+ DaiXp! Dpj 4,
Dai = DaiXp! Doj + €“DaiX))* k Dok 1. + DaiXp/ Dyj. (133a-c)

We denote byF the sheaf of germs of smooiti = 2 functions onM generated by

X', x',, X'. By definition, a generic element € F(U) is a finite sum of the form

_ fy-1p i1 iy Yipi1 i ;
F = Z[J,q20fi1~-ipi,,+1~--ip+q o XXy -+ X'ry X'r+t... X't for certain smooth maps

Iy-1 . . . . . .
ﬁlz--ip];,ﬁl---iw :R™ — R antisymmetric in the pair§y, I1), ... , (ip, I,) and symmetric

iNipi1,...,ip4q- Itis straightforward though tedious to show that

2 & I
= r-dp i iz
F =)0 D iy ¥ 3

p=0 ¢=0

HOK[SQ0 Flr X0 2, — pe Fali L xi2 0]
+%6KL9K9L[%61’1["35_1310F,-il.:;i’;pﬂ_“ipwxi’l,1_1xi°,10xi1,11xi2,12

Fig Fyh e X2 0 ps g L i pxi2 R
+%p(p — 1)6]112 F}Ill.::;.ff;wrlml_pﬂiiljiz] }xi3,13 - xil”]p)zil’ﬂ .. it , (134)

I--1p

I---1p
whereF; = Jigeipips1ipiq

11‘“ipip+l‘“ip+q

f = Flo=o. o

F has a natural grading corresponding to the tetdégree ofc’ ;, x°.
We define orU, N U, # @,

o x. Notice thatF is completely determined by

Zabij = Dijé. (135)



326 R. Zucchini/ Journal of Geometry and Physics 35 (2000) 299-332

It is easy to see thaf is a GL(m, F) 1-cocycle onM. Z is called the fundamental 1
cocycle of thev = 2 differential structure. One can introduce in standard fashion the sheaf
Frs = F(Z® ® ZV®%) of germs of smootV = 2 sections ofZ®" ® ZV®5. We denote
by f. s the vector space of sections &f ; on M.

7z = Zlp=o is nothing but the tangent bundle 1-cocyclewf However, unlike thev = 1
case, there is no simple geometrical interpretation of the spaces

We are particularly interested in the spdgg, which is a graded algebra.

We define

Ha=—X',Di, Hap=XDip—epgX'D; Hp=X'Dis—sX',D;. (136a—C)

Using (132) and (133), it is easy to see &, Ha 5, H, are globally defined derivations
on fo’o.
We set next

[()=C'eD;, 1) =X, D;jC'&D; + C'£D; 4,
[()=[X/D;C'¢ + 3 - XX X! Dy DICTE1D; + - X* Dy C'ED; L + CED;,
(137a—c)

where C¢ is the element of(l”0 corresponding te¢ and is given explicitly byCie =
c'& + 0Kl dcle + Lex 0K O[3 3’6 + 3eMNad) 1k BB’ €]. By (133a) and (135),
1(§), I 4(&), 1(¢) are globally defined derivations dgo.

Using the relationD; C/¢ = 0, D; 4C/& = 0, it is now straightforward to verify that
Ha, Ha B, Hy, 1, L4, I satisfy relations (35)—(37). In this wafg, o becomes & graded
left module algebra of th& graded Lie algebra(cf. Section 3.2).

Thus,f := fp g acquires the structure &f = 2 g superoperation (cf. Definition 8), the
relevant graded derivations being

. . L . . y L
ha = —x'40xi, hap=x'pepLdy — €X' Oxi, ha =X'eaLdy — x',xi,
(138a—c)

i€) =c'Eda, i.aE) = cEeardy +x7,dc'Ed,
1(6) = &8 + 1/ e 60 + [77 0’ + FeKbakex!, dudac’€]d.  (139a—)

This superoperation is canonically associated taXhe 2 differential structure.

In spite of the fact that, in th&y = 2 casef does not have any simple geometrical
interpretation, unlike it9v = 1 counterpart, the (basic) cohomology af the N = 2 case
has essentially the same content as that ofAthe- 1 case and a theorem analogous to
Theorem 3 holds.

Theorem 5. There is an isomorphism of thé = 2 (basic) cohomology of the de Rham
(basic) cohomology of thes) manifold M. Indeed, one has that ™ (f) = 0(H % (f) =
0), except perhaps fam, p) = (1,0), (r,r + 1) with1 < r < m, and
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r—1
HYO(f) ~ Hg(M),  H™" () ~ Hig(M)® \/R?, 1<r <m, (140a,b)
r—1
10 &0 o 770 Hloe 2
Hbasic(f) - HdR basic(M)’ Ht;arsm (f) - HéR basic(M) ® \/ R 1=<r=m

(141a,b)

Proof. By Proposition 4H"-?(f) = O(HbaSI (f) = 0) except perhaps fgp = +£n + 1. On
the other hand, from the definition §fgiven abovef*” = 0 for p < 0. So,H™?(f) =
0(Hp.E(f) = 0) except perhaps fofn, p) = (1,0), (r,r + 1) with 1 < r. Consider
first the case wheré:, p) = (1, 0). From (136b) and the representation theoryi ef
s[(2, R) @ R, itis immediate to see th&tC consists precisely of the of the formF = «
for some smooth functiom on M and thatfl: =2 = 0. Further, the conditionds F = 0 is
equivalent tadgrae = 0, hence to the local constancecofWe thus have a linear bijection
v RON Ny okerda > Z3o(M), whereZio(M) is the space of closedforms, given
by F > «. Beingf—2 = 0, (140a) follows. (141a) also holds, as, cleafy), = f-2. and
ZgR(M) = ZgR basid M)- Consider next the case whewe, p) = (r,r + 1) with 1 < r.
Let F e "t From (136b) and the representation theory-efs((2, R) ® R, F is locally
of the form

_ i ir—1 iy AlAp- 1 MN, ir i1 pA1Ar1
F = X ay X [x o Ty 5€ ;le N ﬁll"'ir—lirir+1] (142)
Wlthall l i ~1 asmooth map symmetriciy, ... , A,_1 and antisymmetricify, ... , i,—1
. . - .
andﬁl1 i ’ﬂ i asmooth map symmetricifiy, ... , A,_1, antisymmetricinq, ... ,i,_1

and symmetrlc in,, i,+1. Next, assume thaty F = 0. Substituting (142) into the relation
dsF = 0 and taking into account the fact that terms with different numbers' ,ofc’

are linearly independent and, thus, must vanish separately, one gets the following three
identities

i1 ir—2 ~ip_q~ip  AlAr-1
Xoar XA, TG L =6 (143)
—_ il ce i,-,z 1 _MN i, lr+l l, 1 Al Ar 1
(r —Dean x5, - x 32 e xyxy Bl
R S l +1 ir41 lr A1
+x’A1 x’Ar_l[ x r ﬂll iy 11 lr+l =+ X’A 8x|r+1all i1y ] = 0 (144)
i1 ir—1 1 _MN_i, _ir41_ir42 _
x,Al X VA € X M'x N X VA 8X'r+2ﬂ11 D 11 lr+1 =0. (145)

From (143), using the symmetry propertie:%é‘fl"'/”‘1 and the fact thafo, %! are odd,
ArAr1

A1 _ H
e\/:en respectively, it follows immediately thai1 i Aer ﬁl +a; ;0% = 0. Since
“zllz ! is already antisymmetric iy, ... ,i,_1, &; -l‘-i, "1 is antisymmetric in all the

|nd|ce511, ..., ir. Thus, for fixedA1, ..., A _1, thea Az A’ I are the coefficients of a
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local » form 4141, Next, applying the derivationp (cf. Eq. (138a)) to Eq. (144) and
contracting witheBA, one gets

ir—1 1_MN_ir _ir+1 pA1Ar1
Xar XA, 126 XA N B i
2 i
_ r—=1 1 _MN_ir _irt1 ArAr—a
r +1x,A1 xA, 126 X MY N 8X|r+1all dp_1iy (146)
Applying d4 to this relation, one gets
i ir— 1 _MN._.i i i “Ap_1
(r— 1)6AAr—lx 1,A1 s X 2Ar 22€ X MX '+1Nx "~ lﬂtl iy rlz i1
. . A
—yh1 Coylr-1 ir  wir4l r=1
X A1 X A 1x AX ﬂll dp—1irir41
_ 2r -1 L yire2 1 MN i, ir41 | Fir-1g A1-Arog
= r+16/_\/_\r lx Al X ,Ar—22 X' MX " NX X|r+la[1 dip_1iy
1 i1 Lyl U ;+1(a aAl 1ih Ar-1 ),
r+1 Ayt XA XA Xir 1%y 11 Xip & 11 dr_1ip41
(147)
i1 R l MN i, Ir41 ir42 rApo1
XA X VAI‘—12 X mx ' NX ' A8X|r+2ﬂll dp_1irir41
2 .
_ 1 i1 1 _MN_ i P ) Ay--Ar_ 1
=7 1x Ay A 5€ X yx N lr A8X|r+laX|r+2all iy 1i (148)

Substituting (147) and (148) into (144) and (145), respectively, one obtains after a straight-
forward calculation the equations

r+1
i ‘rf ‘r Fir -1 AV —
XL py iy i Y (=) iyort iy =0 (149)
=1
A1--A,
Xy xtrt ,_1% MN . ir M)c”+l le'+2A3X|,+13X|,+205l11 i 11'1 =0. (150)
Using the symmetry properties af Ar 1 and the fact tha;t’ %! are odd, even, respec-
r+1 I— 1 Arol _
tively, it is easy to see that (149) |mplles that, 75 (—1) ax., ll drvitsgeire =0or

dgraAtAr-1 = 0 so that the locat form aA1Ar-1 s closed and locally exact. By this
reason and the fact that, Aix’ 7 Bij"Kaxk = 0 by antisymmetry, one finds that Eq. (150)

is automatically satisfied. We note’that, by (132a) and the global definitiéh ibfis easy

to see the local exaetform 4141 js the local restriction of a globally defined closed

r form, which will be denoted by the same symbol. To summarize, we have shown that
(143)—(145) imply that, for fixed\ 1, ... , A,_1, a1 41 is a closed form and that (146)
holds. Conversely, assume that for fixed ... , A,_1,a*14-1isaclosed form and that
(146) holds. Using (132a,b), it is straightforward though tedious to showfthas given

by (142), belongs td"+1. As shown above, (146) implies (147) and (148) using which
Egs. (144) and (145) become equivalent to Egs. (149) and (150). Egs. (143), (149) and
(150), are trivially satisfied by the closedorm 41 4--1, Thus, (143)—(145) are satisfied
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as well implying that/4 F = 0. In conclusion, we have shown thfat+1 N Na=12Kerdu
consists precisely of the elemerfise "1 of the form

1 ir—1 | ~ip AlAr_1 2 1 MN i irg1 ArAr_
F=xy x, |:x o T T 1 >€ X XN O 1@ (151)
with o441 anr form symmetric inAx, ... , A,_1 and such thatlgra®14-1 = 0.

We thus have a linear bijectian: >+ N N,_1 okerd, Zir(M) ® \/"1 R2, where
Z{r(M) is the space of closedforms, given byF — (a414r- D aq... A_q=12. Next,
assume thaf € 3e¥tdgd, f*"~1. Then,F = 3e¥tdxd, G for someG e "1 From
(136b) and the representatlon theory ef s1(2, R) @ R, G is of the form

G=x"} Xt Ay (152)

JAr—17i1 i

with yll lAi ! asmooth map symmetriciy, ... , A,_j and antisymmetricify, ... ,i,_1.

By a straightforward computation, one finds that

1 KL 1 r -1
2 dgd,G = (-D)"" xA1~ Xt Z( D 8""7/11 di- 111+1 i1y

21 MN r lr -1 Ay
+r+l§e l +18XIV+I;( Y 8Xllyll Al 111i1 dp_ir | (153)

Note thatyif}flf:‘i*l are the coefficients of a local— 1 formy41-4--1, By (132a) and the
global definition ofG, y 4141 is the restriction of a globally defined- 1 form, which we

shall denote by the same symbol. As (153) indicates, the lineapmmegps cohomologically
trivial elements of’>r+1ﬂﬂA=1,2kerdA into cohomologically trivial elements afyo (M) ®
\/"~1R2. Thus,v induces a linear bijection : H""+1(f) > Hig(M) ® \/""1R2. Next,
assume thar € f;;;cl and thatd4 F = 0. In particular,F is of the form (151) for some
closedr form 4141 symmetricindy, ... , A,_1. By (43d,e) and the relatiafy F = 0,

the basicity ofF is equivalent to the relatiop(¢§) F = 0,& € g, wherej (&), by (39a), is
given in the present situation by (139a). A simple computation shows that this identity is
equivalent to

ir—1 Apog

i1 i _
X ap X g 10’50{[1 i =0 (154)

As is straightforward to check, this relation entails th‘ag i1 ? = 0, so thatjgr(¢)

aAr A1 = 0. As Igr(§) = [ddr, jar(€)] and dgrad1Ar-1 = 0, the closed- form
aA14r-1 is basic. Conversely, 4141 is basic (154) obviously holds. So, the linear
bijectionv introduced earlier mang’ggcl N Na=1.2Kerd, into Zjn posidM) ® \/’*1 R?,

whereZ, ..id M) is the space of closed basidorms. LetG e fg;sml Then,G is of the
form (152) and satisfieg(£)G = 0, j4(§)G =0, 1(§)G = 0, wherej (&), ja (&) andl (&)
are defined by (39) and are given by (139). It is straightforward to see that these identities

yield the equations

enn_y Xy, xR cirigy At 2 o, (155)
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i r r r A —
x,lAl xlArll [Zax"cl gy!l i 1! lt+1 i1 +c! sax"ytl dr-1 :| =0 (156)

. A A, .
Thus cloéyloll i, =0, Y 18X.,c”$yl1 i Ar- +c’*.§8xiryil_fl.r_; =0, asis

1ir ll+1 Ay
easy to see, so th@JR(é)yAl Ar-1 = 0 andigr(&)y AL A 0 andy41Ar-1 js basic.
Conversely the basicity of41 41 implies (155) and (156). From (152) and (153), we
see thatv maps cohomologically trivial elements tﬁ,g;ﬁcl N Na=12kerd, into cohomo-
Iogically trivial elements ofZ)p | ..idM) ® \/”1 R2. Thus,v induces a linear bijection

b Hgge (0 > Hig oM © VT RZ. 0
A theorem analogous to Theorem 4 also holds.
Theorem 6. One has
Connf) >~ Conn(M) (157)
(cf. Definition10).

Proof. From the representation theoryick s((2, R) @ R, anya, € 41 ® g is locally of
the forma, = aiifA, whereq; is ag valued smooth map. Defing(aa)a=1.2) = aiddrx’.
Then, from (139), it is easy to see thaflas)a=1,2) is a connection ol if and only if
(aa)a=12 is a connection of. The map is clearly a bijection. O

8.3. The relation between thé = 1 and N = 2 cohomologies of

Letf(n) denote the superoperatibfor N = n, n = 1, 2, as defined in Sections 8.1 and
8.2.

Corollary 2. One has

n—1
Hn,in+l(f(2)) ~ Hi(ﬂ*l/2)+l/2(f(1)) ® \/ R27 (158)
1/2)+1/2 7
n,xn +(n
Hian ™ (1(2) = Hyoi Y22 0(1) © \/ R2. (159)
Proof. Combine Theorem 3 and Theorem 5. O

Thus, theN = 1 andN = 2 cohomologies of are closely related. Note the analogy to
relations (85) and (86).

Corollary 3. One has
Connf(2)) >~ Conn(f(1)). (160)

Proof. Combine Theorem 4 and Theorem 6. O
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Thus, theV = 1 andN = 2 connections of are manifestations of the same geometrical
structure.

9. Concluding remarks

There are a few fundamental questions which are still open and which are of considerable
salience both in geometry and topological field theory.

Corollaries 1 suggest that a relation formally analogous to (159) should hold also between
theN = 1 andN = 2 equivariant cohomologies bfcf. Section 7). Further, from (160), we
expect that the range of thé = 1 andN = 2 Weil homomorphisms (cf. Sections 7.1 and
7.2) should have essentially the same content. This question is of fundamental importance
to show conclusively that balanced topological gauge field theory does not contain new
topological observables besides those coming from the undeyiggl theory. We have
not been able to either prove or disprove such assertions yet.

There are other possible lines of inquiry. It is known that Me= 1 Maurer—Cartan
equations of a Lie algebrgacan be obtained from th¥ = 1 Weil algebra relation (50) by
formally settingy = 0. By a similar procedure, one can obtain tfie= 2 Maurer—Cartan
equations by formally settingiag = 0, p4 = 0 in the N = 2 Weil algebra relations (56).
Indeed, it is straightforward to check that the basic relatifn f{z] = O still holds after
this truncation. This hints to a possible = 2 generalization of gauge fixing.

Finally, note that, by obtaining th¥ = 2 Weil algebra, we are in the position of formu-
lating other models of equivariant conomology in balanced topological field theory besides
Cartan’s used in [31], generalizing thé = 1 intermediate or BRST model of [7,8].

We leave these matters to future work.
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